Skip to main content
Log in

Trajectory Tracking Control of Euler-Lagrange Systems with ISS-Like Robustness to Actuator Noises

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper studies global robust tracking of uncertain Euler-Lagrange systems with input disturbances. The authors develop a robust regulation-based approach for the problem. Specifically, by introducing a novel nonlinear internal model, the authors solve global asymptotic trajectory tracking with disturbance rejection of multiple step/sinusoidal signals with unknown amplitudes, frequencies, and phases. Moreover, the authors show that a robustness property to actuator noises can be guaranteed in a sense of strong integral input-to-state stability (iISS). That is, the closed-loop system is not only iISS but also input-to-state stable (ISS) to small magnitude actuator noises. Furthermore, the authors explore a by-product overparametrized linear regression estimation, coming up with robust estimation of the unknown parameters. Finally, the authors present several numerical examples to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ortega R, Loría A, Nicklasson P J, et al., Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications, Springer Science & Business Media, Berlin, 1998.

    Book  Google Scholar 

  2. Slotine J J E and Li W, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ, 1991.

    MATH  Google Scholar 

  3. Spong M W, Hutchinson S, and Vidyasagar M, Robot Modeling and Control, Wiley, New York, 2006.

    Google Scholar 

  4. Craig J J, Hsu P, and Sastry S S, Adaptive control of mechanical manipulators, The International Journal of Robotics Research, 1987, 6(2): 16–28.

    Article  Google Scholar 

  5. Middleton R H and Goodwin G C, Adaptive computed torque control for rigid link manipulations, Systems & Control Letters, 1988, 10(1): 9–16.

    Article  MATH  Google Scholar 

  6. Spong M W and Ortega R, On adaptive inverse dynamics control of rigid robots, IEEE Transactions on Automatic Control, 1990, 35(1): 92–95.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dawson D M and Lewis F L, Comments on “On adaptive inverse dynamics control of rigid robots”, IEEE Transactions on Automatic Control, 1991, 36(10): 1215–1216.

    Article  MathSciNet  Google Scholar 

  8. Slotine J J E and Li W, On the adaptive control of robot manipulators, The International Journal of Robotics Research, 1987, 6(3): 49–59.

    Article  Google Scholar 

  9. Slotine J J E, Putting physics in control — The example of robotics, IEEE Control Systems Magazine, 1988, 8(6): 12–18.

    Article  Google Scholar 

  10. Leal R L and Dewit C C, Passivity based adaptive control for mechanical manipulators using LS-type estimation, IEEE Transactions on Automatic Control, 1990, 35(12): 1363–1365.

    Article  MathSciNet  MATH  Google Scholar 

  11. Tang Y and Arteaga M A, Adaptive control of robot manipulators based on passivity, IEEE Transactions on Automatic Control, 1994, 39(9): 1871–1875.

    Article  MathSciNet  MATH  Google Scholar 

  12. Scherpen J M A and Ortega R, On nonlinear control of Euler-Lagrange systems: Disturbance attenuation properties, Systems & Control Letters, 1997, 30(1): 49–56.

    Article  MathSciNet  MATH  Google Scholar 

  13. Tomei P, Tracking control of flexible joint robots with uncertain parameters and disturbances, IEEE Transactions on Automatic Control, 1994, 39(5): 1067–1072.

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo G L and Saridis G N, Robust compensation for a robotic manipulator, IEEE Transactions on Automatic Control, 1983, 29(6): 564–567.

    MATH  Google Scholar 

  15. Chen B S, Lee T S, and Feng J H, A nonlinear H control design in robotic systems under parameter perturbation and external disturbance, International Journal of Control, 1994, 59(2): 439–461.

    Article  MathSciNet  MATH  Google Scholar 

  16. Battilotti S and Lanari L, Adaptive disturbance attenuation with global stability for rigid and elastic joint robots, Automatica, 1997, 33(2): 239–243.

    Article  MathSciNet  MATH  Google Scholar 

  17. Tomei P, Robust adaptive control of robots with arbitrary transient performance and disturbance attenuation, IEEE Transactions on Automatic Control, 1999, 44(3): 654–658.

    Article  MathSciNet  MATH  Google Scholar 

  18. Mei K, Ding S, Yang X, et al., Second-order sliding mode controller design with a larger domain of attraction, Journal of Systems Science & Complexity, 2020, 33(1): 61–73.

    Article  MathSciNet  MATH  Google Scholar 

  19. Patre P M, MacKunis W, Dupree K, et al., Modular adaptive control of uncertain Euler-Lagrange systems with additive disturbances, IEEE Transactions on Automatic Control, 2011, 56(1): 155–160.

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen B S, Chang Y C, and Lee T C, Adaptive control in robotic systems with H tracking performance, Automatica, 1997, 33(2): 227–234.

    Article  MathSciNet  MATH  Google Scholar 

  21. Jayawardhana B and Weiss G, Tracking and disturbance rejection for fully actuated mechanical systems, Automatica, 2008, 44(11): 2863–2868.

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu M, Liu L, and Feng G, Adaptive tracking control of uncertain Euler-Lagrange systems subject to external disturbances, Automatica, 2019, 104: 207–219.

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu H and Xu D, Inverse optimality and adaptive asymptotic tracking control of uncertain Euler-Lagrange systems, 2019 IEEE 15th International Conference on Control and Automation (ICCA), 2019, 242–247.

    Chapter  Google Scholar 

  24. Sontag E D, Input to state stability: Basic concepts and results, Eds. by Nistri P and Stefani G, Nonlinear and Optimal Control Theory, Springer, Berlin, 2007, 163–220.

    Google Scholar 

  25. Angeli D, Input-to-state stability of PD-controlled robotic systems, Automatica, 1999, 35(7): 1285–1290.

    Article  MathSciNet  MATH  Google Scholar 

  26. Angeli D, Sontag E D, and Wang Y, A characterization of integral input-to-state stability, IEEE Transactions on Automatic Control, 2000, 45(6): 1082–1097.

    Article  MathSciNet  MATH  Google Scholar 

  27. Liberzon D, Sontag E D, and Wang Y, Universal construction of feedback laws achieving ISS and integral-ISS disturbance attenuation, Systems & Control Letters, 2002, 46(2): 111–127.

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiang Z P and Hill D J, Passivity and disturbance attenuation via output feedback for uncertain nonlinear systems, IEEE Transactions on Automatic Control, 1998, 43(7): 992–997.

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu T, Jiang Z P, and Hill D J, Nonlinear Control of Dynamic Networks, CRC Press, New York, 2014.

    MATH  Google Scholar 

  30. Huang J and Chen Z, A general framework for tackling the output regulation problem, IEEE Transactions on Automatic Control, 2004, 49(12): 2203–2218.

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu D, Constructive nonlinear internal models for global robust output regulation and application, IEEE Transactions on Automatic Control, 2018, 63(5): 1523–1530.

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu D and Huang J, A generic internal model for robust output regulation problem for plants subject to an uncertain exosystem, 2019 IEEE 15th International Conference on Control and Automation (ICCA), 2019, 1179–1184.

    Chapter  Google Scholar 

  33. Chaillet A, Angeli D, and Ito H, Combining iISS and ISS with respect to small inputs: The strong iISS property, IEEE Transactions on Automatic Control, 2014, 59(9): 2518–2524.

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang J, Nonlinear Output Regulation: Theory and Applications, SIAM, Philadelphia, 2004.

    Book  MATH  Google Scholar 

  35. Byrnes C I and Isidori A, Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation, IEEE Transactions on Automatic Control, 2003, 48(10): 1712–1723.

    Article  MathSciNet  MATH  Google Scholar 

  36. Bastin G, Bitmead R R, Campion G, et al. Identification of linearly overparametrized nonlinear systems, IEEE Transactions on Automatic Control, 1992, 37(7): 1073–1078.

    Article  MathSciNet  MATH  Google Scholar 

  37. Sun W, Xia J, and Wu Y, Adaptive tracking control for mobile manipulators with stochastic disturbances, Journal of Systems Science & Complexity, 2019, 32(5): 1393–1403.

    Article  MathSciNet  MATH  Google Scholar 

  38. Byrnes C I and Isidori A, Nonlinear internal models for output regulation. IEEE Transactions on Automatic Control, 2004, 49(12): 2244–2247.

    Article  MathSciNet  MATH  Google Scholar 

  39. Krstić M, Kanellakopoulos I, and Kokotović P V, Nonlinear and Adaptive Control Design, Wiley, New York, 1995.

    MATH  Google Scholar 

  40. Astolfi D, Isidori A, Marconi L, et al., Nonlinear output regulation by post-processing internal model for multi-input multi-output systems, IFAC Proceedings Volumes, 2013, 46(23): 295–300.

    Article  Google Scholar 

  41. Bin M and Marconi L, Output regulation by postprocessing internal models for a class of multi-variable nonlinear systems, International Journal of Robust and Nonlinear Control, 2020, 30(3): 1115–1140.

    Article  MathSciNet  MATH  Google Scholar 

  42. Xu D, Chen Z, and Wang X, Global robust stabilization of nonlinear cascaded systems with integral ISS dynamic uncertainties, Automatica, 2017, 80: 210–217.

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang H and Xie Y, Flocking of networked mechanical systems on directed topologies: A new perspective, International Journal of Control, 2015, 88(4): 872–884.

    Article  MathSciNet  MATH  Google Scholar 

  44. Sontag E D and Wang Y, New characterizations of input-to-state stability, IEEE Transactions on Automatic Control, 1996, 41(9): 1283–1294.

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu D, Wang X, and Chen Z, Output regulation of nonlinear output feedback systems with exponential parameter convergence, Systems & Control Letters, 2016, 88: 81–90.

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang Y and Guo L, Convergence of self-tuning regulators under conditional heteroscedastic noises with unknown high-frequency gain, Journal of Systems Science & Complexity, 2021, 34(1): 236–250.

    Article  MathSciNet  MATH  Google Scholar 

  47. Sastry S, Nonlinear Systems: Analysis, Stability and Control, Springer-Verlag, New York, NY, USA, 1999.

    Book  MATH  Google Scholar 

  48. Khalil H K, Nonlinear Systems, Prentice Hall, New Jersey, 2002.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiwen Wu or Dabo Xu.

Additional information

This paper was supported in part by the National Natural Science Foundation of China under Grant Nos. 61673216 and 62073168; The work of Wu was supported by the China Scholarship Council on his study at the University of Groningen, The Netherlands; The work of Xu was partially done when he was with the School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China.

This paper was recommended for publication by Editor LIU Tengfei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Xu, D. Trajectory Tracking Control of Euler-Lagrange Systems with ISS-Like Robustness to Actuator Noises. J Syst Sci Complex 35, 1719–1747 (2022). https://doi.org/10.1007/s11424-022-0219-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-022-0219-4

Keywords

Navigation