Skip to main content
Log in

New Phase of Phase

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Year 2021 is special. It sees the renaissance of concept of phase and the birth of a phase theory for matters much beyond complex numbers and single-input single-output (SISO) linear time-invariant (LTI) systems while we celebrate the 60th birthday of Lei Guo, an exemplary research leader of our times. Here we give a short tutorial of the newly developed phase theory, as a birthday present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie L L and Guo L, How much uncertainty can be dealt with by feedback? IEEE Transactions on Automatic Control, 2000, 45(12): 2203–2217.

    Article  MathSciNet  MATH  Google Scholar 

  2. Postlethwaite I and MacFarlane AG, A Complex Variable Approach to the Analysis of Linear Multivariable Feedback Systems, Springer-Verlag, Berlin, 1979.

    Book  MATH  Google Scholar 

  3. Postlethwaite I, Edmunds J, and MacFarlane A, Principal gains and principal phases in the analysis of linear multivariable feedback systems, IEEE Transactions on Automatic Control, 1981, 26(1): 32–46.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen J, Multivariable gain-phase and sensitivity integral relations and design tradeoffs, IEEE Transactions on Automatic Control, 1998, 43(3): 373–385.

    Article  MathSciNet  MATH  Google Scholar 

  5. Freudenberg J S and Looze D P, Frequency Domain Properties of Scalar and Multivariable Feedback Systems, Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, Germany, vol. 104, 1988.

    Book  MATH  Google Scholar 

  6. Anderson B D and Green M, Hilbert transform and gain/phase error bounds for rational functions, IEEE Transactions on Circuits and Systems, 1988, 35(5): 528–535.

    Article  MathSciNet  MATH  Google Scholar 

  7. Owens D H, The numerical range: A tool for robust stability studies?. Systems & Control Letters, 1984, 5(3): 153–158.

    Article  MathSciNet  MATH  Google Scholar 

  8. Tits A, Balakrishnan V, and Lee L, Robustness under bounded uncertainty with phase information, IEEE Transactions on Automatic Control, 1999, 44(1): 50–65.

    Article  MathSciNet  MATH  Google Scholar 

  9. Laib K, Korniienko A, Dinh M, Scorletti G, and Morel F, Hierarchical robust performance analysis of uncertain large scale systems, IEEE Transactions on Automatic Control, 2018, 63(7): 2075–2090.

    Article  MathSciNet  MATH  Google Scholar 

  10. Horn R A and Johnson C R, Matrix Analysis, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  11. Marshall A W, Olkin I, and Arnold B C, Inequalities: Theory of Majorization and Its Applications, Springer, New York, 1979.

    MATH  Google Scholar 

  12. Wang D, Chen W, Khong S Z, and Qiu L, On the phases of a complex matrix, Linear Algebra and Its Applications, 2020, 593: 152–179.

    Article  MathSciNet  MATH  Google Scholar 

  13. Horn R A and Johnson C R, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

  14. Horn A and Steinberg R, Eigenvalues of the unitary part of a matrix, Pacific Journal of Mathematics, 1959, 9: 541–550.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang F, A matrix decomposition and its applications, Linear and Multilinear Algebra, 2015, 63: 2033–2042.

    Article  MathSciNet  MATH  Google Scholar 

  16. DePrima C and Johnson C R, C The range of A−1A* in GL(n), Linear Algebra and Its Applications, 1974, 9: 209–222.

    Article  MathSciNet  MATH  Google Scholar 

  17. Furtado S and Johnson C R, Spectral variation under congruence, Linear and Multilinear Algebra, 2001, 49: 243–259.

    Article  MathSciNet  MATH  Google Scholar 

  18. Anderson B D and Vongpanitlerd S, Network Analysis and Synthesis, Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, 1973.

    Google Scholar 

  19. Stewart G and Sun J G, Matrix Perturbation Theory, Academic Press, New York, 1990.

    MATH  Google Scholar 

  20. Chen W, Wang D, Khong S Z, and Qiu L, A phase theory of MIMO LTI systems, arXiv preprint arXiv: 2105.03630, 2021.

  21. Zhao D, Ringh A, Qiu L, and Khong S Z, Low phase-rank approximation, arXiv preprint arXiv: 2011.14811, 2020.

  22. Ringh A and Qiu L, Finsler geometries on strictly accretive matrices, arXiv preprint arXiv: 2011.13575, 2020.

  23. Furtado S and Johnson C R, Spectral variation under congruence for a nonsingular matrix with 0 on the boundary of its field of values, Linear Algebra and Its Applications, 2003, 359: 67–78.

    Article  MathSciNet  MATH  Google Scholar 

  24. Mao X, Chen W, and Qiu L, Phases of discrete-time LTI multivariable systems, Automatica, 2021 (accepted).

  25. Bauer F L, Optimal scaled matrices, Numerische Mathematik, 1963, 5: 73–87.

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang D, Phase analysis of MIMO systems and dynamical networks, Ph.D. thesis, Hong Kong University of Science and Technology, Hong Kong, 2020.

    Google Scholar 

  27. Wang D, Chen W, and Qiu L, Synchronization of diverse agents via phase analysis, Working Paper, 2021.

  28. Brogliato B, Lozano R, Maschke B, and Egeland O, Dissipative Systems Analysis and Control: Theory and Applications, 2nd Edition, Springer, New York, 2007.

    Book  MATH  Google Scholar 

  29. Kottenstette N, McCourt M J, Xia M, Gupta V, and Antsaklis P J, On relationships among passivity, positive realness, and dissipativity in linear systems, Automatica, 2014, 50(4): 1003–1016.

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu K Z and Yao Y, Robust Control: Theory and Applications, John Wiley & Sons, New Jersey, 2016.

    Book  MATH  Google Scholar 

  31. Lanzon A and Petersen I R, Stability robustness of a feedback interconnection of systems with negative imaginary frequency response, IEEE Transactions on Automatic Control, 2008, 53(4): 1042–1046.

    Article  MathSciNet  MATH  Google Scholar 

  32. Petersen I R and Lanzon A, Feedback control of negative-imaginary systems, IEEE Control Systems Magazine, 2010, 30(5): 54–72.

    Article  MathSciNet  Google Scholar 

  33. Zhou K, Doyle J C, and Glover K, Robust and Optimal Control, Prentice Hall, New Jersey, 1996.

    MATH  Google Scholar 

  34. Desoer C A and Vidyasagar M, Feedback Systems: Input-Output Properties, Academic Press, New York, 1975.

    MATH  Google Scholar 

  35. Vidyasagar M, Input-Output Analysis of Large-Scale Interconnected Systems: Decomposition, Well-Posedness and Stability, Springer-Verlag, Berlin, 1981.

    Book  MATH  Google Scholar 

  36. Wen J T, Robustness analysis based on passivity, Proceedings of 1988 American Control Conference, Atlanta, 1988.

  37. Bao J and Lee P L, Process Control: The Passive Systems Approach, Springer, New York, 2007.

    Google Scholar 

  38. Iwasaki T and Hara S, Generalized KYP lemma: unified frequency domain inequalities with design applications, IEEE Transactions on Automatic Control, 2005, 50(1): 41–59.

    Article  MathSciNet  MATH  Google Scholar 

  39. Francis B A, A Course in HControl Theory, Springer-Verlag, Berlin, 1987.

    Book  Google Scholar 

  40. Doyle J C, Glover K, Khargonekar P P, and Francis B A, State-space solutions to standard \(\cal{H}_{2}\) and \(\cal{H}_{\infty}\) control problems, IEEE Transactions on Automatic Control, 1989, 34(8): 831–847.

    Article  MathSciNet  MATH  Google Scholar 

  41. Iwasaki T and Skelton R E, All controllers for the general \(\cal{H}_{\infty}\) control problem: LMI existence conditions and state space formulas, Automatica, 1994, 30(8): 1307–1317.

    Article  MathSciNet  MATH  Google Scholar 

  42. Gahinet P and Apkarian P, A linear matrix inequality approach to H control, International Journal of Robust and Nonlinear Control, 1994, 4: 421–448.

    Article  MathSciNet  MATH  Google Scholar 

  43. Başar T and Bernhard P, H-Optimal Control and Related Minimax Design Problems, Springer Science+Business Media, New York, 2008.

    Book  MATH  Google Scholar 

  44. Kimura H, Chain-Scattering Approach to H-Control, Springer Science + Business Media, New York, 1996.

    Book  Google Scholar 

  45. Sun W, Khargonekar P P, and Shim D, Solution to the positive real control problem for linear time-invariant systems, IEEE Transactions on Automatic Control, 1994, 39(10): 2034–2046.

    Article  MathSciNet  MATH  Google Scholar 

  46. Moylan P J and Hill D J, Stability criteria for large-scale systems, IEEE Transactions on Automatic Control, 1978, AC-23(2): 143–149.

    Article  MathSciNet  MATH  Google Scholar 

  47. Safonov M, Stability margins of diagonally perturbed multivariable feedback systems, IEE Proceedings, 1982, 129(6): 251–256.

    Article  MathSciNet  Google Scholar 

  48. Doyle J C, Analysis of feedback systems with structured uncertainties, IEE Proceedings, 1982, 129(6): 242–250.

    Article  MathSciNet  Google Scholar 

  49. Wang D, Chen W, Khong S Z, and Qiu L, Stability of general dynamical networks via majorization of phases, Proceedings of 23rd International Symposium on Mathematical Theory of Networks and Systems, Hong Kong, 2018.

  50. Ren W and Beard R W, Distributed Consensus in Multi-vehicle Cooperative Control, Springer, London, 2008.

    Book  MATH  Google Scholar 

  51. Lin Z, Distributed Control and Analysis of Coupled Cell Systems, VDM Verlag Dr. Muller, Germany, May 2008.

    Google Scholar 

  52. Bullo F, Cortés J, and Martínez S, Distributed Control of Robotic Networks, Princeton University Press, Princeton, 2009.

    Book  MATH  Google Scholar 

  53. Mesbahi M and Egerstedt M, Graph Theoretic Methods in Multiagent Networks, Princeton University Press, Berlin, 2010.

    Book  MATH  Google Scholar 

  54. Lewis F L, Zhang H, Hengster-Movric K, and Das A, Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches, Springer-Verlag, 2014.

  55. Bullo F, Lectures on Network Systems, ed. 1.4, Kindle Direct Publishing, 2019, with contributions by J. Cortés, F. Dörfler, and S. Martínez.

  56. Jadbabaie A, Lin J, and Morse A S, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transactions on Automatic Control, 2003, 48(6): 988–1001.

    Article  MathSciNet  MATH  Google Scholar 

  57. Olfati-Saber R and Murray R M, Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control, 2004, 49(9): 1520–1533.

    Article  MathSciNet  MATH  Google Scholar 

  58. Lin Z, Francis B, and Maggiore M, Getting mobile autonomous robots to rendezvous, Workshop on Control of Uncertain Systems: Modelling, Approximation, and Design, 2006.

  59. Olfati-Saber R, Fax J A, and Murray R M, Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE, 2007, 95(1): 215–233.

    Article  MATH  Google Scholar 

  60. Bürger M, Zelazo D, and Allgöwer F, Duality and network theory in passivity-based cooperative control, Automatica, 2014, 50(8): 2051–2061.

    Article  MathSciNet  MATH  Google Scholar 

  61. Chen C, Zhao D, Chen W, Khong S Z, and Qiu L, Phase of nonlinear systems, arXiv preprint arXiv: 2012.00692, 2021.

Download references

Acknowledgements

The authors would like to thank all other team members in the phase theory team: Chao Chen, Xin Mao, Qiangsheng Gao, Ding Zhang, Jiajin Liang of Hong Kong University of Science and Technology, Axel Ringh of University of Gothenburg, Di Zhao of Tongji University, independent researcher Sei Zhen Khong for their contributions in various aspects of the phase theory research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Qiu, Wei Chen or Dan Wang.

Additional information

This research was supported by Hong Kong Research Grants Council under Grant No. 16200619 and National Natural Science Foundation of China under Grant No. 62073003.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Chen, W. & Wang, D. New Phase of Phase. J Syst Sci Complex 34, 1821–1839 (2021). https://doi.org/10.1007/s11424-021-1249-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-021-1249-z

Keywords

Navigation