Skip to main content
Log in

Approximate Controllability for Degenerate Heat Equation with Bilinear Control

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper investigates the nonnegative approximate controllability for the one-dimensional degenerate heat equation governed by bilinear control. Both non-controllability and approximate controllability are studied for the system. If the control is restricted to act on a fixed domain, it is not controllable. If the control is allowed to mobile, it is approximately controllable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu X, Yong J, and Zhang X, Controllability and observability of a heat equation with hyperbolic memory kernel, J. Differential Equations, 2009, 247(8): 2395–2439.

    Article  MathSciNet  Google Scholar 

  2. Zhang X, Unique continuation for stochastic parabolic equations, Differential Integral Equations, 2008, 21(1–2): 81–93.

    MathSciNet  MATH  Google Scholar 

  3. Zhang X, Carleman and observability estimates for stochastic wave equations, SIAM J. Math. Anal., 2008, 40(2): 851–868.

    Article  MathSciNet  Google Scholar 

  4. Zhu Q and Wang H, Output feedback stabilization of stochastic feedforward systems with unknown control coefficients and unknown output function, Automatica, 2018, 87: 166–175.

    Article  MathSciNet  Google Scholar 

  5. Wang B and Zhu Q, Stability analysis of semi-Markov switched stochastic systems, Automatica, 2018, 94: 72–80.

    Article  MathSciNet  Google Scholar 

  6. Wang H and Zhu Q, Adaptive output feedback control of stochastic nonholonomic systems with nonlinear parameterization, Automatica, 2018, 98: 247–255.

    Article  MathSciNet  Google Scholar 

  7. Zhang M and Zhu Q, New criteria of input-to-state stability for nonlinear switched stochastic delayed systems with asynchronous switching, Syst. Control Lett., 2019, 129: 43–50.

    Article  MathSciNet  Google Scholar 

  8. Zhu Q, Stability analysis of stochastic delay differential equations with Lévy noise, Syst. Control Lett., 2018, 118: 62–68.

    Article  Google Scholar 

  9. Ball J M, Marsden J E, and Slemrod M, Controllability for distributed bilinear systems, SIAM J. Control Optim., 1982, 20(4): 575–597.

    Article  MathSciNet  Google Scholar 

  10. Kime K, Simultaneous control of a rod equation and a simple Schrödinger equation, Syst. Control Lett., 1995, 24(4): 301–306.

    Article  MathSciNet  Google Scholar 

  11. Khapalov A Y, Global non-negative controllability of the semilinear parabolic equation governed by bilinear control, ESAIM Control Optim. Calc. Var., 2002, 7: 269–283.

    Article  MathSciNet  Google Scholar 

  12. Khapalov A Y, Controllability of the semilinear parabolic equation governed by a multiplicative control in the reaction term: A qualitative approach, SIAM J. Control Optim., 2003, 41(6): 1886–1900.

    Article  MathSciNet  Google Scholar 

  13. Cannarsa P, Floridia G, and Khapalov A Y, Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign, Journal de Mathématiques Pures et Appliquées, 2017, 108(4): 425–458.

    Article  MathSciNet  Google Scholar 

  14. Cannarsa P and Khapalov A Y, Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign, Discrete Contin. Dyn. Syst. Ser. B, 2010, 14(4): 1293–1311.

    MathSciNet  MATH  Google Scholar 

  15. Lei P and Gao H, Null controllability of semilinear parabolic equations via the bilinear control, Appl. Math. Lett., 2010, 23(1): 53–57.

    Article  MathSciNet  Google Scholar 

  16. Lin P, Lei P, and Gao H, Bilinear control system with the reaction-diffusion term satisfying Newton’s law, Z. angew. Math. Mech., 2007, 87(1): 14–23.

    Article  MathSciNet  Google Scholar 

  17. Lin P, Zhou Z, and Gao H, Exact controllability of the parabolic system with bilinear control, Appl. Math. Lett., 2006, 19(6): 568–575.

    Article  MathSciNet  Google Scholar 

  18. Ouzahra M, Tsouli A, and Boutoulout A, Exact controllability of the heat equation with bilinear control, Mathematical Methods in the Applied Sciences, 2015, 38(18): 5074–5084.

    Article  MathSciNet  Google Scholar 

  19. Ouzahra M, Approximate and exact controllability of a reaction-diffusion equation governed by bilinear control, European Journal of Control, 2016, 32: 32–38.

    Article  MathSciNet  Google Scholar 

  20. Alabau-Boussouira F, Cannarsa P, and Fragnelli G, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 2006, 6(2): 161–204.

    Article  MathSciNet  Google Scholar 

  21. Cannarsa P, Martinez P, and Vancostenoble J, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 2008, 47(1): 1–19.

    Article  MathSciNet  Google Scholar 

  22. Cannarsa P, Martinez P, and Vancostenoble J, Persistent regional null controllability for a class of degenerate parabolic equations, Communications on Pure and Applied Analysis, 2004, 3(4): 607–635.

    Article  MathSciNet  Google Scholar 

  23. Gueye M, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 2014, 52(4): 2037–2054.

    Article  MathSciNet  Google Scholar 

  24. Wang C, Approximate controllability of a class of semilinear systems with boundary degeneracy, J. Evol. Equ., 2010, 10(1): 163–193.

    Article  MathSciNet  Google Scholar 

  25. Wang C, Approximate controllability of a class of degenerate systems, Applied Mathematics and Computation, 2008, 203(1): 447–456.

    Article  MathSciNet  Google Scholar 

  26. Lin P, Gao H, and Liu X, Some results on a nonlinear degenerate parabolic system by bilinear control, J. Math. Anal. Appl., 2007, 326(2): 1149–1160.

    Article  MathSciNet  Google Scholar 

  27. Cannarsa P and Floridia G, Approximate multiplicative controllability for degenerate parabolic problems with Robin boundary conditions, Commun. Appl. Ind. Math., 2011, 2(2): 1–16.

    MathSciNet  MATH  Google Scholar 

  28. Floridia G, Approximate controllability for nonlinear degenerate parabolic problems with bilinear control, J. Differential Equations, 2014, 257(9): 3382–3422.

    Article  MathSciNet  Google Scholar 

  29. Fernández L A and Khapalov A Y, Controllability properties for the one-dimensional heat equation under multiplicative or nonnegative additive controls with local mobile support, ESAIM Control Optim. Calc. Var., 2012, 18(4): 1207–1224.

    Article  MathSciNet  Google Scholar 

  30. Campiti M, Metafune G, and Pallara D, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 1998, 57(1): 1–36.

    Article  MathSciNet  Google Scholar 

  31. Ladyžhenskaya O A, Solonnikov V A, and Ural’ceva N N, Linear and quasilinear equations of parabolic type, Transl. Math. Mono., vol. 23, AMS, Providence R.I., 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Gao.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11771074, 11871142 and the PhD Research Start-up Fund of Northeast Electric Power University under Grant No. BSJXM-2019113.

This paper was recommended for publication by Editor LIU Yungang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Gao, H. Approximate Controllability for Degenerate Heat Equation with Bilinear Control. J Syst Sci Complex 34, 537–551 (2021). https://doi.org/10.1007/s11424-020-9082-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-9082-3

Keywords

Navigation