Skip to main content
Log in

On the Topology and Isotopic Meshing of Plane Algebraic Curves

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper presents a symbolic algorithm to compute the topology of a plane curve. This is a full version of the authors' CASC15 paper. The algorithm mainly involves resultant computations and real root isolation for univariate polynomials. Compared to other symbolic methods based on elimination techniques, the novelty of the proposed method is that the authors use a technique of interval polynomials to solve the system \(\left\{ {f(\alpha ,y),\tfrac{{\partial f}}{{\partial y}}(\alpha ,y)} \right\}\) and simultaneously obtain numerous simple roots of f(α, y) = 0 on the α fiber. This significantly improves the efficiency of the lifting step because the authors are no longer required to compute the simple roots of f(α, y) = 0. After the topology is computed, a revised Newton's method is presented to compute an isotopic meshing of the plane algebraic curve. Though the approximation method is numerical, the authors can ensure that the proposed method is a certified one, and the meshing is topologically correct. Several nontrivial examples confirm that the proposed algorithm performs well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti L, Mourrain B, and Wintz J, Topology and arrangement computation of semi-algebraic planar curves, Computer Aided Geometry Design, 2008, 25(8): 631–651.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnon D S, Collins G, and McCallum S, Cylindrical algebraic decomposition, I: The Basic Algorithm, SIAM Journal on Computing, 1984, 13(4): 865–877.

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnon D S, Collins G, and McCallum S, Cylindrical algebraic decomposition, II: An adjacency algorithm for plane, SIAM Journal on Computing, 1984, 13(4): 878–889.

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnon D S, Collins G, and McCallum S, Cylindrical algebraic decomposition, III: An adjacency algorithm for 3D space, Journal of Symbolic Computation, 1988, 5(1-2): 163–187.

    Article  MathSciNet  MATH  Google Scholar 

  5. Berberich E, Emeliyanenko P, Kobel A, et al., Arrangement computation for planar algebraic curves, Proceedings of the 4th Internal Workshop on Symbolic-Numeric Computation ACM, San Jose, USA, 2011, 88–99.

    MATH  Google Scholar 

  6. Burr M, Choi S, Galehouse B, et al., Complete subdivision algorithms, II: Isotopic meshing of algebraic curves, Proc. ISSAC 2008, ACM Press, 2008, 87–94.

    Google Scholar 

  7. Burr M, Gao S, and Tsigaridas E, The complexity of an adaptive subdivision method for approximating real curves, Proc. ISSAC 2017, ACM Press, 2017, 61–68.

    Google Scholar 

  8. Chen C B and Wu W Y, A continuation method for visualizing planar real algebraic curves with singularities, Computer Algebra in Scientific Computing 2018, Lecture Notes in Comput. Sci., Springer, Cham, 2018, 11077: 99–115.

    MathSciNet  MATH  Google Scholar 

  9. Cheng S W, Dey T K, Ramos A, et al., Sampling and meshing a surface with guaranteed topology and geometry, Proc. Symp. on CG, ACM Press, New York, 2004, 280–289.

    Google Scholar 

  10. Cheng J S, Gao X S, and Li M, Determining the topology of real algebraic surfaces, Mathematics of Surfaces XI, LNCS, Springer-Verlag, 2005, 3604: 121–146.

    Article  MATH  Google Scholar 

  11. Cheng J S, Lazard S, Peñaranda L, et al., On the topology of real algebraic plane curves, Mathematics in Computer Science, 2010, 4: 113–117.

    Article  MathSciNet  MATH  Google Scholar 

  12. Corless R M, Diaz-Toca G M, Fioravanti M, et al, Computing the topology of a real algebraic plane curve whose defining equations are available only “by values”, Computer Aided Geometric Design, 2013, 30(7): 675–706.

    Article  MathSciNet  MATH  Google Scholar 

  13. Diatta D N, Rouillier F, and Roy M F, On the computation of the topology of plane curves, Proc. ISSAC 2014 (Ed. by Katsusuke N), ACM, New York, 2014, 130–137.

    Google Scholar 

  14. Eigenwillig A and Kerber M, Exact and efficient 2d-arrangements of arbitrary algebraic curves, Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA08), San Francisco, USA, ACM-SIAM, ACM/SIAM, 2008, 122–131.

    Google Scholar 

  15. Eigenwillig A, Kerber M, and Wolpert N, Fast and exact geometric analysis of real algebraic plane curves, Proc. ACM ISSAC 2007, ACM Press, New York, 2007, 151–158.

    Google Scholar 

  16. Gao B, and Chen Y F, Finding the topology of implicitly defined two algebraic plane curves, Journal of Systems Science and Complexity, 2012, 25: 362–374.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao X S and Li M, Rational quadratic approximation to real algebraic curves, Computer Aided Geometric Design, 2004, 21: 805–828.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hong H, An efficient method for analyzing the topology of plane real algebraic curves, Mathematics and Computers in Simulation, 1996, 42(4-6): 571–582.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lazard D, CAD and topology of semi-algebraic sets, Mathematics in Computer Science, 2010, 4(1): 93–112.

    Article  MathSciNet  MATH  Google Scholar 

  20. Liang C, Mourrain B, and Pavone J P, Subdivision methods for the topology of 2d and 3d implicit curves, Computational Methods for Algebraic Spline Surfaces, Springer-Verlag, 2006.

    Google Scholar 

  21. Lorensen W E and Cline H E, Marching cubes: A high resolution 3d surface construction algorithm, Proc. SIGGRAPH 1987, ACM Press, New York, 1987.

    Google Scholar 

  22. González-Vaga L and El Kahoui M, An improved upper complexity bound for the topology computation of a real algebraic plane curve, J. Complexity, 1996, 12: 527–544.

    Article  MathSciNet  MATH  Google Scholar 

  23. González-Vega L and Necula I, Efficient topology determination of implicitly defined algebraic plane curves, Computer Aided Geometric Design, 2002, 19: 719–743.

    Article  MathSciNet  MATH  Google Scholar 

  24. Martin R, Shou H, Voiculescu I, et al., Comparison of interval methods for plotting algebraic curves, Computer Aided Geometric Design, 2002, 19: 553–587.

    Article  MathSciNet  MATH  Google Scholar 

  25. Plantinga S and Vegter G, Isotopic meshing of implicit surfaces, Visual Computer, 2007, 23: 45–58.

    Article  Google Scholar 

  26. Ratschek H, Scci-hybrid method for 2d curve tracing, International Journal of Image and Graphics, World Scientific Publishing Company, 2005, 5(3): 447–479.

    Article  Google Scholar 

  27. Sakkalis T, The topological configuration of a real algebraic curve, Bull. Aust. Math. Soc., 1991, 43: 37–50.

    Article  MathSciNet  MATH  Google Scholar 

  28. Sakkalis T and Farouki R, Singular points of algebraic curves, Journal of Symbolic Computation, 1990, 9(4): 405–421.

    Article  MathSciNet  MATH  Google Scholar 

  29. Seidel R and Wolpert N, On the exact computation of the topology of real algebraic curves, Proceedings of the 21st Annual ACM Symposium on Computational Geometry, 2005, 107–115.

    MATH  Google Scholar 

  30. Snyder J M, Interval analysis for computer graphics, Proc. 19th Annual Conf. on Computers, 1992, 121–130.

    Google Scholar 

  31. Cheng J S, and Gao X S, Multiplicity-preserving triangular set decomposition of two polynomials, Journal of Systems Science and Complexity, 2014, 27: 1320–1344.

    Article  MathSciNet  MATH  Google Scholar 

  32. Arnon D S and McCallum S, A polynomial-time algorithm for the topological type of a real algebraic curve, Journal of Symbolic Computation, 1998, 5: 213–236.

    Article  MathSciNet  MATH  Google Scholar 

  33. Mourrain B, Pion S, Schmitt S, et al., Algebraic issues in computational geometry, Effective Computaional Geometry for Curves and Surfaces (Eds. by Boissonnat J D and Teillaud M), Mathematics and Visualization, Chapter 3, Springer, Berlin, 2006.

    Google Scholar 

  34. Abel J P G, José F M M, and Edgar S P, A BSP-based algorithm for dimensionally nonhomoge-neous planar implicit curves with topological guarantees, ACM Trans. on Graph., 2009, 28(2): 1–17.

    Google Scholar 

  35. Cheng J S, Gao X S, and Li J, Topology determination and isolation for implicit plane curves, Proc. ACM Symposium on Applied Computing, 2009, 1140–1141.

    Google Scholar 

  36. Cheng J S and Jin K, A generic position based method for real root isolation of zero-dimensional polynomial systems, Journal of Symbolic Computation, 2015, 68: 204–224.

    Article  MathSciNet  MATH  Google Scholar 

  37. Jin K, Cheng J S, and Gao X S, On the topology and visualization of plane algebraic curves, Computer Algebra in Scientific Computing, CASC 2015, Lecture Notes in Computer Science (Eds. by Gerdt V, Koepf W, Seiler W, et al.), Springer, Cham, 2015, 9301.

    Chapter  Google Scholar 

  38. Moore R E, Kearfott R B, and Cloud M J, Introduction to interval analysis, Society for Industrial and Applied Mathematics, Philadelphia, 2009.

    Google Scholar 

  39. Cheng J S, Gao X S, and Yap C, Complete numerical isolation of real roots in zero-dimensional triangular systems, Proc. ACM ISSAC 2007, ACM Press, New York, 2007, 92–99.

    Google Scholar 

  40. Akritas A G, An implementation of Vincent's Theorem, Numerische Mathematik, 1980, 36: 53–62.

    Article  MathSciNet  MATH  Google Scholar 

  41. Collins G and Akritas A, Polynomial real roots isolation using Descartes' rule of signs, Proc. ACM ISSAC 1976, 1976, 272–275.

    Google Scholar 

  42. Collins G and Loos R, Real zeros of polynomials, Computer Algebra, Springer, Vienna, 1983, 83–94.

    Chapter  Google Scholar 

  43. Du Z, Sharma V, and Yap C, Amortized bounds for root isolation via Sturm sequences, SNC 2007, 2007, 113–130.

    Google Scholar 

  44. Rouillier F and Zimmermann P, Efficient isolation of polynomial real roots, Journal of Computational and Applied Mathematics, 2003, 162(1): 33–50.

    Article  MathSciNet  MATH  Google Scholar 

  45. Sagraloff M, When Newton meets descartes: A simple and fast algorithm to isolate the real roots of a polynomial, Proc. ACM ISSAC 2012, 2012, 297–304.

    Google Scholar 

  46. Diochnos D I, Emiris I Z, and Tsigaridas E P, On the asymptotic and practical complexity of solving bivariate systems over the reals, Journal of Symbolic Computation, Special issue for ISSAC 2007, 44(7): 818–835.

    Article  MathSciNet  MATH  Google Scholar 

  47. Fulton W, Introduction to intersection theory in algebraic geometry, Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1984, 54.

  48. Teissier B, Cycles évanescents, sections planes et conditions de Whitney, French, Singularités à Cargèse Astérisque, 1973, 7-8: 285–362.

    MATH  Google Scholar 

  49. Beltrán C and Leykin A, Robust certified numerical homotopy tracking, Foundations of Computational Mathematics, 2013, 13(2): 253–295.

    Article  MathSciNet  MATH  Google Scholar 

  50. Li T Y, Numerical solution of polynomial systems by homotopy continuation methods, Handbook of Numerical Analysis, 2013, 11: 209–230.

    MATH  Google Scholar 

  51. Labs O, A list of challenges for real algebraic plane curve visualization, software, Nolinear Computational Geometry, Vol 151 of The IMA Volumes, Springer, New York, 2010, 137–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Jin.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 11471327, “The Research Funds for Beijing Universities” under Grant No. KM201910009001, and “The Research and Development Funds of Hubei University of Science and Technology” under Grant No. BK202024.

This paper was recommended for publication by Editor LI Hongbo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, K., Cheng, J. On the Topology and Isotopic Meshing of Plane Algebraic Curves. J Syst Sci Complex 33, 230–260 (2020). https://doi.org/10.1007/s11424-020-8262-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-8262-5

Keywords

Navigation