Skip to main content
Log in

Integer Codes Correcting Single Errors and Random Asymmetric Errors within a Byte

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In optical networks without optical amplifiers (ONWOAs) photons may fade or fail to be detected, but new photons cannot be generated. Hence, under normal conditions, only 1→0 errors can occur. However, in some situations, the photodetector may generate a false 0→1 error. This mostly occurs in cases when the dark current is higher than specified. With this in mind, in this paper, the authors present a class of codes suitable for use in ONWOAs using self-synchronous scramblers. The presented codes can correct single errors and random asymmetric (1→0) errors within a b-bit byte. Unlike classical codes, these codes use integer and lookup table operations. As a result, their interleaved version, implemented on a dual-core 3.0 GHz processor, achieves the theoretical throughput above the operating rate of 10G networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramaswami R, Sivarajan K, and Sasaki G, Optical Networks: A Practical Perspective, Morgan Kaufmann, 2009.

    Google Scholar 

  2. Pierce J, Optical channels: Practical limits with photon counting, IEEE Transactions on Communications, 1978, 26(12): 1819–1821.

    Article  Google Scholar 

  3. Oprisan P and Bose B, Arq in optical networks, Proceedings 2001 Pacific Rim International Symposium on Dependable Computing, IEEE, 2001, 251–257.

    Chapter  Google Scholar 

  4. Alexander S B, Optical Communication Receiver Design, Insitute of Electrical Engineers, London, 1997.

    Book  Google Scholar 

  5. Channel coding software decoders hall of fame, Available at: http://aff3ct.github.io/hofpolar.html.

  6. Channel coding software decoders hall of fame, Available at: http://aff3ct.github.io/hofldpc.html.

  7. Channel coding software decoders hall of fame, Available at: http://aff3ct.github.io/hofturbo.html.

  8. Radonjic A and Vujicic V, Integer codes correcting burst errors within a byte, IEEE Transactions on Computers, 2011, 62(2): 411–415.

    Article  MathSciNet  Google Scholar 

  9. Radonjic A, Bala K, and Vujicic V, Integer codes correcting double asymmetric errors, IET Communications, 2016, 10(14): 1691–1696.

    Article  Google Scholar 

  10. Radonjic A and Vujicic V, Integer codes correcting spotty byte asymmetric errors, IEEE Communications Letters, 2016, 20(12): 2338–2341.

    Article  Google Scholar 

  11. Radonjic A and Vujicic V, Integer codes correcting high-density byte asymmetric errors, IEEE Communications Letters, 2016, 21(4): 694–697.

    Article  Google Scholar 

  12. Radonjic A and Vujicic V, Integer codes correcting single errors and burst asymmetric errors within a byte, Information Processing Letters, 2017, 121: 45–50.

    Article  MathSciNet  Google Scholar 

  13. Radonjic A, (perfect) integer codes correcting single errors, IEEE Communications Letters, 2017, 22(1): 17–20.

    Article  Google Scholar 

  14. Radonjic A and Vujicic V, Integer codes correcting burst and random asymmetric errors within a byte, Journal of the Franklin Institute, 2018, 355(2): 981–996.

    Article  MathSciNet  Google Scholar 

  15. Gorshe S S, Analysis of the interaction between linear cyclic error correcting codes and selfsynchronous payload scramblers, IEEE Transactions on Communications, 2008, 56(11): 1800–1806.

    Article  Google Scholar 

  16. Gorshe S S, Forward error correction with self-synchronous scramblers, Mar. 22 2011. US Patent 7,913,151.

    Google Scholar 

  17. Dell T and Glaise R, Forward error correction encoding for multiple link transmission compatible with 64b/66b scrambling, August 9, US Patent 7,996,747, 2011.

    Google Scholar 

  18. Mehlhorn K and Sanders P, Algorithms and Data Structures: The Basic Toolbox, Springer Science & Business Media, New York, 2008.

    MATH  Google Scholar 

  19. Giladi R, Network Processors: Architecture, Programming, and Implementation, Morgan Kaufmann, San Francisco, 2008.

    Google Scholar 

  20. Hennessy J L and Patterson D A, Computer Architecture: A Quantitative Approach, Elsevier, Amsterdam, 2011.

    MATH  Google Scholar 

  21. The microarchitecture of intel, amd and via cpus: An optimization guide for assembly programmers and compiler makers, Available at: http://www.agner.org/optimize/microarchitecture.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aleksandar Radonjic or Vladimir Vujicic.

Additional information

This paper was recommended for publication by Editor ZHANG Zhifang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radonjic, A., Vujicic, V. Integer Codes Correcting Single Errors and Random Asymmetric Errors within a Byte. J Syst Sci Complex 33, 2103–2113 (2020). https://doi.org/10.1007/s11424-020-8145-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-8145-9

Keywords

Navigation