Advertisement

Journal of Systems Science and Complexity

, Volume 31, Issue 3, pp 621–646 | Cite as

Optimal Multimodel Representation by Laguerre Filters Applied to a Communicating Two Tank System

  • Adaily Sameh
  • Mbarek Abdelkader
  • Garna Tarek
  • Ragot José
Article
  • 37 Downloads

Abstract

This paper presents the development of a new nonlinear representation by exploiting the multimodel approach and the new linear representation ARX-Laguerre for each operating region. The resulting multimodel, entitled ARX-Laguerre multimodel, is characterized by the parameter number reduction with a recursive representation. However, a significant reduction of this multimodel is subject to an optimal choice of Laguerre poles characterizing each local linear model ARX-Laguerre. Therefore, the authors propose an optimization algorithm to estimate, from input/output measurements, the optimal values of Laguerre poles. The ARX-Laguerre multimodel as well as the proposed optimization algorithm are tested on a continuous stirred tank reactor system (CSTR). Moreover, the authors take into account a practical validation on an experimental communicating two tank system (CTTS).

Keywords

ARX-Laguerre model Laguerre poles multimodel approach optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bouzrara K, Mbarek A, Garna T, et al., Nonlinear predictive controller for uncertain process modeled by GOBF-Volterra models, International Journal of Modelling, Identification and Control, 2013, 19(4): 307–322.CrossRefGoogle Scholar
  2. [2]
    Diouf C, Telescu M, Cloastre P, et al., On the use of equality constraints in the identification of volterra-laguerre models, IEEE Signal Processing Letters, 2012, 19(12): 857–860.CrossRefGoogle Scholar
  3. [3]
    Ricardo J G B Campello, Gard Favier, andWagner C do Amaralc, Optimal expansions of discretetime Volterra models using Laguerre functions, Automatica, 2004, 40(5): 815–822.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Dumont G and Fu Y, Non-linear adaptive control via Laguerre expansion of Volterra kernels, Int. J. Adapt. Contr. Signal Process., 1993, 7(5): 367–382.CrossRefzbMATHGoogle Scholar
  5. [5]
    Boyd S and Chua L O, Fading memory and the problem of approximating nonlinear operators with Volterra series, IEEE Tr. Circuits and Systems, 1985, 32(11): 1150–1161.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Kibangou A Y, Favier G, and Hassani M M, Laguerre-Volterra filters optimization based on Laguerre spectra, EURASIP Journal on Advances in Signal Processing, 2005, 17: 2874–2887.zbMATHGoogle Scholar
  7. [7]
    Garna T, Bouzrara K, Ragot J, et al., Nonlinear system modeling based on bilinear Laguerre orthonormal bases, ISA transactions, 2013, 52(3): 301–317.CrossRefzbMATHGoogle Scholar
  8. [8]
    Garna T, Bouzrara K, Ragot J, et al., Optimal expansions of discrete-time bilinear models using Laguerre functions, IMA Journal of Mathematical Control & Information, 2013, 31(3): 313–343.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Ghassen M, Abdelkader M, Tarek G, et al., Nonlinear model based predictive control using multiple models approach expanded on Laguerre bases, Wseas Transactions on Systems and Control, 2015, 10: 113–126.Google Scholar
  10. [10]
    Sbarbaro D and Johansen T A, Multiple local Laguerre models for modelling nonlinear dynamic systems of the Wiener class, IEE Proceedings, Control Theory Applications, 1997, 144(5): 375–380.CrossRefzbMATHGoogle Scholar
  11. [11]
    Sbarbaro D, Context sensitive networks for modelling nonlinear dynamic systems, Proceedings of 3rd European Control Conference, 1995, 3b: 2420–2425.Google Scholar
  12. [12]
    Boukhris A, Mourot G, and Ragot J, Non-linear dynamic system identification: A multi-model approach, International Journal of Control, 1999, 72(7–8): 591–604.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Orjuela R, Marx B, Ragot J, et al., State estimation for nonlinear systems using decoupled multiple model, International Journal of Modelling Identification and Control, 2008, 4(1): 59–67.CrossRefGoogle Scholar
  14. [14]
    Bouzrara K, Garna T, Ragot J, et al., Decomposition of an ARX model on orthonormal Laguerre bases, ISA Transactions, 2012, 51(6): 848–860.CrossRefGoogle Scholar
  15. [15]
    Demuth H, Beale M, and Hagan M, Neural Network Toolbox 5, User’s Guide, The MathWorks, 2007.Google Scholar
  16. [16]
    Filev D, Fuzzy modeling of complex systems, International Journal of Approximate Reasoning, 199, 5(3): 281–290.Google Scholar
  17. [17]
    Johansen T A and Foss A B, Constructing NARMAX using ARMAX models, International Journal of Control, 1993, 58(5): 1125–1153.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Johansen T A and Foss B A, Identification of non-linear system structure and parameters using regime decomposition, Automatica, 1995, 31(2): 321–326.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Narendra K S and Cheng X, Adaptive control of discrete-time systems using multiple models, IEEE Transactions on Automatic Control, 2000, 45(9): 1669–1686.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Bouzrara K, Garna T, Ragot J, et al., Online identification of the ARX model expansion on Laguerre orthonormal bases with filtres on model input and output, International Journal of Control, 2013, 86(3): 369–385.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Tanguy N, Morvan R, Vilbé P, et al., Online optimization of the time scale in adaptive Laguerrebased filters, IEEE Transactions on Signal Processing, 2000, 48(4): 1184–1187.CrossRefGoogle Scholar
  22. [22]
    Seborg D E, Edger T F, and Millichamp D A, Process Dynamics and Control, John Wiley & Sons, 2004.Google Scholar

Copyright information

© Institute of Systems Science, Academy of Mathematics and Systems Science, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Adaily Sameh
    • 1
  • Mbarek Abdelkader
    • 1
  • Garna Tarek
    • 1
    • 2
  • Ragot José
    • 3
  1. 1.Laboratory of Automatic Control, Signal and Image Processing, National Engineering School of MonastirUniversity of MonastirMonastirTunisia
  2. 2.Higher Institute of Applied Science and Technology of SousseUniversity of SousseSousseTunisia
  3. 3.Center of Research on Automatic of NancyCNRSVandoeuvre CedexFrance

Personalised recommendations