Skip to main content
Log in

Bell state preparation based on switching between quantum system models

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

For the preparation of any target Bell state under continuous quantum measurement, this paper proposes a method which achieves the control objective by switching between two different models or by switching between two control channels under one model. Proper control Hamiltonians are selected for the two system models, a switching strategy between the two models is designed, and the stability of the whole switching system is proved in theory. For a given target Bell state, the effectiveness of the proposed switching control strategy between different models is illustrated through simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong D and Petersen I R, Quantum control theory and applications: A survey, IET Control Theory Appl., 2010, 4(12): 2651–2671.

    Article  MathSciNet  Google Scholar 

  2. Dong D, Chen C, Qi B, et al., Robust manipulation of superconducting qubits in the presence of fluctuations, Sci. Rep., 2015, 5: 7873.

    Article  Google Scholar 

  3. Altafini C and Ticozzi F, Modeling and control of quantum systems: An introduction, IEEE Trans. Automatic Control, 2012, 57(8): 1898–1917.

    Article  MathSciNet  Google Scholar 

  4. Zhang J, Wu R B, Liu Y X, et al., Quantum coherent nonlinear feedback with applications to quantum optics on chip, IEEE Trans. Automatic Control, 2012, 57(8): 1997–2008.

    Article  Google Scholar 

  5. Wiseman H M and Milburn G J, Quantum theory of optical feedback via homodyne detection, Phys. Rev. Lett., 1993, 70(5): 548–551.

    Article  Google Scholar 

  6. Chu S, Cold atoms and quantum control, Nature, 2002, 416(6877): 206–210.

    Article  Google Scholar 

  7. Rabitz H, The role of theory in the laboratory control of quantum dynamics phenomena, Theor. Chem. Acc., 2003, 109(2): 64–70.

    Article  Google Scholar 

  8. Dantus M and Lozovoy Z Z, Experimental coherent laser control of physicochemical processes, Chem. Rev., 2004, 104(4): 1813–1859.

    Article  Google Scholar 

  9. Van Handel R, Stockton J K, and Mabuchi H, Modelling and feedback control design for quantum state preparation, J. Opt B: Quantum Semiclass. Opt., 2005, 7(10): 179–197.

    Article  MathSciNet  Google Scholar 

  10. Belavkin V P, Nondemolition measurement and control in quantum dynamical systems, Information Complexity and Control in Quantum Physics (eds. by Blaquiere A, Diner S, and Lochak G), Springer, Vienna, 1987, 294: 311–329.

    Article  MathSciNet  Google Scholar 

  11. Belavkin V P, Quantum stochastic calculus and quantum nonlinear filtering, J. Multivariate Anal., 1992, 42(2): 171–201.

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang J and Wiseman H M, Feedback-stabilization of an arbitrary pure state of a two-level atom, Phys. Rev. A., 2001, 64(6): 063810.

    Article  Google Scholar 

  13. Bouten L, Edwards S, and Belavkin V P, Bellman equations for optimal feedback control of qubit states, J. Phys. B: At. Mol. Opt. Phy., 2005, 38(3): 151–160.

    Article  Google Scholar 

  14. Mirrahimi M and Van Handel R, Stabilizing feedback control for quantum systems, SIAM J. Control Optim., 2007, 46(2): 445–467.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuang S and Cong S, Lyapunov control methods of closed quantum systems, Automatica, 2008, 44(1): 98–108.

    Article  MathSciNet  MATH  Google Scholar 

  16. Cong S and Liu J X, Trajectory tracking theory of quantum systems, Journal of Systems Science & Complexity, 2014, 27(4): 679–693.

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong D and Petersen I R, Sliding mode control of quantum systems, New J. Phys., 2009, 11(10): 105033.

    Article  MathSciNet  Google Scholar 

  18. Dong D and Petersen I R, Sliding mode control of two-level quantum systems, Automatica, 2012, 48(5): 725–735.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ge S S, Vu T L, and Hang C C, Non-smooth Lyapunov function-based global stabilization for quantum filter, Automatica, 2012, 48(6): 1031–1044.

    Article  MathSciNet  MATH  Google Scholar 

  20. Wootters W K, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 1998, 80(10): 2245.

    Article  Google Scholar 

  21. Yamamoto N, Tsumura K, and Hara S, Feedback control of quantum entanglement in a two-spin system, Automatica, 2007, 43(6): 981–992.

    Article  MathSciNet  MATH  Google Scholar 

  22. Vu T L, Ge S S, and Hang C C, Real-time deterministic generation of maximally entangled two-qubit and three-qubit states via bang-bang control, Phy. Rev. A, 2012, 85(1): 012332.

    Article  Google Scholar 

  23. Abe T and Tsumura K, Generation of quantum entangled state via continuous feedback control, Processing of SICE Annual Conference 2008, Tokyo, Japan, 2008, 3305–3308.

    Google Scholar 

  24. Kushner H J, Stochastic Stability and Control, Academic Press, New York, 1967.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Kuang.

Additional information

This research was supported by the Fundamental Research Funds for the Central Universities under Grant No. WK2100100019, and the National Natural Science Foundation of China under Grant No. 61573330.

This paper was recommended for publication by Editor SUN Jian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Kuang, S. & Cong, S. Bell state preparation based on switching between quantum system models. J Syst Sci Complex 30, 347–356 (2017). https://doi.org/10.1007/s11424-016-5100-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-016-5100-x

Keywords

Navigation