Skip to main content
Log in

Variable selection for covariate adjusted regression model

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper employs the SCAD-penalized least squares method to simultaneously select variables and estimate the coefficients for high-dimensional covariate adjusted linear regression models. The distorted variables are assumed to be contaminated with a multiplicative factor that is determined by the value of an unknown function of an observable covariate. The authors show that under some appropriate conditions, the SCAD-penalized least squares estimator has the so called “oracle property”. In addition, the authors also suggest a BIC criterion to select the tuning parameter, and show that BIC criterion is able to identify the true model consistently for the covariate adjusted linear regression models. Simulation studies and a real data are used to illustrate the efficiency of the proposed estimation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sentürk D and Müller H G, Covariate-adjusted regression, Biometrika, 2005, 92: 75–89.

    Article  MATH  MathSciNet  Google Scholar 

  2. Sentürk D and Müller H G, Inference for covariate-adjusted regression via varying coefficient models, Ann. Statist., 2006, 34: 654–679.

    Article  MATH  MathSciNet  Google Scholar 

  3. Sentürk D and Müller H G, Covariate adjusted correlation analysis via varying coefficient models, Scand. J. Statist., 2005, 32: 365–383.

    Article  MATH  MathSciNet  Google Scholar 

  4. Sentürk D, Covariate-adjusted varying coefficient models, Biostatistics, 2006, 7: 235–251.

    Article  MATH  Google Scholar 

  5. Sentürk D and Danh V Nguyen, Estimation in covariate-adjusted regression, Comput. Statist. Data Anal., 2006, 20: 3294–3310.

    Article  Google Scholar 

  6. Sentürk D and Müller H G, Covariate-adjusted generalized linear models, Biometrika, 2009, 96(2): 357–370.

    Article  MATH  MathSciNet  Google Scholar 

  7. Cui X, Statistical analysis of two types of complex data and its associated model, Ph.D. Thesis, Shandong University, Jinan, 2008.

    Google Scholar 

  8. Cui X, Guo W S, Lin L, and Zhu L X, Covariate-adjusted nonlinear regression, Ann. Statist., 2009, 37: 1839–1870.

    Article  MATH  MathSciNet  Google Scholar 

  9. Zhang J, Zhu L X, and Liang H, Nonlinear models with measurement errors subject to single-indexed distortion, J. Multivariate Anal., 2012, 112: 1–3.

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhang J, Yu Y, Zhu L X, and Liang H, Partial linear single index models with distortion measurement errors, Ann. Inst. Statist. Math., 2013, 65: 237–267.

    Article  MATH  MathSciNet  Google Scholar 

  11. Frank I E and Friedman J H, A statistical view of some chemometrics regression tools (with discussion), Technometrics, 1993, 35: 109–148.

    Article  MATH  Google Scholar 

  12. Tibshirani R, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 1996, 58: 267–288.

    MATH  MathSciNet  Google Scholar 

  13. Zou H and Hastie T, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol., 2005, 67: 301–320.

    Article  MATH  MathSciNet  Google Scholar 

  14. Zou H, The adaptive Lasso and its oracle properties, J. Amer. Statist. Assoc., 2006, 101: 1418–1429.

    Article  MATH  MathSciNet  Google Scholar 

  15. Fan J Q and Li R, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Statist. Assoc., 2001, 96: 1348–1360.

    Article  MATH  MathSciNet  Google Scholar 

  16. Fan J Q and Peng H, Nonconcave penalized likelihood with a diverging number of parameters, Ann. Statist., 2004, 32: 928–961.

    Article  MATH  MathSciNet  Google Scholar 

  17. Li G R, Peng H, and Zhu L X, Nonconcave penalized M-estimation with diverging number of parameters, Statist. Sinica, 2011, 21: 391–419.

    MATH  MathSciNet  Google Scholar 

  18. Fan J and Lü J, Sure independence screening for ultra-high dimensional feature space (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 2008, 70: 849–911.

    Article  MathSciNet  Google Scholar 

  19. Li G R, Peng H, Zhang J, and Zhu L X, Robust rank correlation based screening, Ann. Statist., 2012, 40(3): 1846–1877.

    Article  MATH  MathSciNet  Google Scholar 

  20. Craven P and Wahba G, Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation, Numer. Math., 1979, 31: 337–403.

    MathSciNet  Google Scholar 

  21. Wang H, Li R, and Tsai C L, Tuning parameter selectors for the smoothly clipped absolute deviation method, Biometrika, 2007, 94: 553–568.

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhu L X and Fang K T, Asymptotics for kernel estimate of sliced inverse regression, Ann. Statist., 1996, 24: 1053–1068.

    Article  MATH  MathSciNet  Google Scholar 

  23. Härdle W and Stoker T M, Investigating smooth multiple regression by the method of average derivatives, J. Amer. Statist. Assoc., 1989, 84: 986–995.

    MATH  MathSciNet  Google Scholar 

  24. Zhu L P and Zhu L X, Nonconcave penalized inverse regression in single-index models with high dimensional predictors, J. Multivariate Anal., 2009, 100: 862–875.

    Article  MATH  MathSciNet  Google Scholar 

  25. Huber P J, Robust regression: Asymptotics, conjectures and Monte Carlo, Ann. Statist., 1973, 1: 799–821.

    Article  MATH  MathSciNet  Google Scholar 

  26. Jin Z, Lin D Y, Wei L J, and Ying Z, Rank-based inference for the accelerated failure time model, Biometrika, 2003, 90: 341–353.

    Article  MATH  MathSciNet  Google Scholar 

  27. Xu J, Leng C, and Ying Z, Rank-based variable selection in the accelerated failure time model, Stat. Comput., 2010, 20: 165–176.

    Article  MathSciNet  Google Scholar 

  28. Liang H, Liu X, Li R, and Tsai C L, Estimation and testing for partially linear single-index models, Ann. Statist., 2010, 38: 3811–3836.

    Article  MATH  MathSciNet  Google Scholar 

  29. Harrison D and Rubinfeld D L, Hedonic prices and the demand for clean air, J. Environ. Econom. Manage., 1978, 5: 81–102.

    Article  MATH  Google Scholar 

  30. Zhang J, Zhu L P, and Zhu L X, On a dimension reduction regression with covariate adjustment, J. Multivariate Anal., 2012, 104: 39–55.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaorong Li.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11471029, 11101014, 61273221 and 11171010, the Beijing Natural Science Foundation under Grant Nos. 1142002 and 1112001, the Science and Technology Project of Beijing Municipal Education Commission under Grant No. KM201410005010, the Research Fund for the Doctoral Program of Beijing University of Technology under Grant No. 006000543114550.

This paper was recommended for publication by Editor SUN Liuquan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Du, J., Li, G. et al. Variable selection for covariate adjusted regression model. J Syst Sci Complex 27, 1227–1246 (2014). https://doi.org/10.1007/s11424-014-2276-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-014-2276-9

Keywords

Navigation