Skip to main content

Heart rate variability during high-intensity exercise

Abstract

The aim of this paper is to describe and analyse the behaviour of heart rate variability (HRV) during constant-load, high-intensity exercise using a time frequency analysis (Wavelet Transform). Eleven elite cyclists took part in the study (age: 18.6±3.0 years; VO2max: 4.88±0.61 litres·min−1). Initially, all subjects performed an incremental cycloergometer test to determine load power in a constant load-test (379.55±36.02 W; 89.0%). HRV declined dramatically from the start of testing (p <0.05). The behaviour of power spectral density within the LF band mirrored that of total energy, recording a significant decrease from the outset LF peaks fell rapidly thereafter, remaining stable until the end of the test. HF-VHF fell sharply in the first 20 to 30 seconds. The relative weighting (%) of HF-VHF was inverted with the onset of fatigue, [1.6% at the start, 7.1 (p <0.05) at the end of the first phase, and 43.1% (p <0.05) at the end of the test]. HF-VHFpeak displayed three phases: a moderate initial increase, followed by a slight fall, thereafter increasing to the end of the test. The LF/HF-VHF ratio increased at the start, later falling progressively until the end of the first phase and remaining around minimal values until the end of the test.

This is a preview of subscription content, access via your institution.

References

  1. Akselrod S D, Gordon D, Ubel F A, Shannon D C, Berger A C, and Cohen R J, Power spectrum analysis of heart rate fluctuations: A quantitative probe of beat-to-beat cardiovascular control, Science, 1981, 213(4504): 220–222.

    Article  Google Scholar 

  2. Pomeranz B, Macauley R J, Caudil M A, et al., Assessment of autonomic function in humans by heart rate spectral analysis, Am. J. Phys. (Heart Circ Physiol), 1985, 248(1): H151–H153.

    Google Scholar 

  3. Perini R and Veicsteinas A, Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions, Eur. J. Appl. Physiol, 2003, 90(3–4): 317–325.

    Article  Google Scholar 

  4. Aubert A E, Spes B, and Beckers F, Heart rate variability in athletes, Sport Med., 2003, 33(12): 889–919.

    Article  Google Scholar 

  5. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Heart rate variability, Standards of measurement, physiological interpretation, and clinical use, Eur. Heart J., 1976, 17: 354–381.

    Google Scholar 

  6. Tulppo M P, Makikallio T H, Takala T E, Seppanen T, and Huikuri H V, Quantitative beat-to-beat analysis of heart rate dynamics during exercise, Am J Phys. (Heart Circ Physiol), 1996, 271(1): H244–H252.

    Google Scholar 

  7. Cottin F, Médigue C, Leprêtre L M, Papelier Y, Koralsztein J P, and Billat V, Heart rate variability during exercise performed below and above ventilatory threshold, Med. Sci. Sports Exerc., 2004, 36(4): 594–600.

    Article  Google Scholar 

  8. Pichon A P, De Bisschop C, Rouland M, Denejan A, and Papelier Y, Spectral analysis of heart rate variability during exercise in trained subjects, Med. Sci. Sports Exerc., 2004, 36(10): 1702–1708.

    Article  Google Scholar 

  9. Sumi K, Suzuki S, Matsubara M, Ando Y, and Kobayashi F, Heart rate variability during high-intensity field exercise in female distance runners, Scand. J. Med. Sci. Sports, 2006, 16(5): 314–320.

    Article  Google Scholar 

  10. Anosov O, Patzak A, Kononovich Y, and Persson P B, High-frequency oscillations of the heart rate during ramp load reflect the human anaerobic threshold, Eur. J. Appl. Physiol, 2000, 83(4-5): 388–394.

    Article  Google Scholar 

  11. Cottin F, Médigue C, Lopes P, Leprêtre P M, Heubert R, and Billat V, Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test, Int. J. Sports Med., 2007, 28(4): 287–294.

    Article  Google Scholar 

  12. Sarmiento S, Variabilidad de la frecuencia cardiaca (VFC), en deportistas, durante la aplicación de cargas incrementales y estables de diferentes intensidades: Un análisis tiempo-frecuencia (Wavelet), Ph. D. Thesis, Universidad de Las Palmas de Gran Canaria, GC, Spain, 2008.

    Google Scholar 

  13. Bernardi L and Piepoli M F, Autonomic nervous system adaptation during exercise, Ital. Hearth J., 2001, 2(8): 831–839.

    Google Scholar 

  14. Carter J B, Banister E W, and Blaber A P, Effect of endurance exercise on autonomic control of heart rate, Sports Med., 2003, 33(1): 33–46.

    Article  Google Scholar 

  15. Borresen J and Lambert M I, Autonomic control of heart rate during and after exercise: Measurements and implications for monitoring training status, Sport Med., 2008, 38(8): 633–646.

    Article  Google Scholar 

  16. Pichot V, Busso T, Roche F, Garet M, Costes F, Duverney D, Lacour J R, and Barthélémy J C, Autonomic adaptations to intensive and overload training periods: A laboratory study, Med. Sci. Sports Exerc., 2002, 34(10): 1660–1666.

    Article  Google Scholar 

  17. Malpas S C, Neural influences on cardiovascular variability: Possibilities and pitfalls, Am. J. Physiol (Heart Circ Physiol), 2002, 282(1): H6–H20.

    Google Scholar 

  18. Perini R, Milesi S, Fisher N M, Pendergast D R, and Veicsteinas A, Heart rate variability during dynamic exercise in elderly males and females, Eur. J. Appl. Physiol, 2000, 82(1–2): 8–15.

    Article  Google Scholar 

  19. Hirsch J A and Bishop B, Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate, Am. J. Physiol, 1981, 241(4): H620–H629.

    Google Scholar 

  20. Casadei B, Cochrane S, Johnston J, Conway J, and Sleight P, Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans, Acta Physiol Scand, 1995, 153(2): 125–131.

    Article  Google Scholar 

  21. Rowell L B and O’Leary D S, Reflex control of the circulation during exercise: Chemoreflexes and mechanoreflexes, J. Appl. Physiol, 1990, 69(2): 407–418.

    Google Scholar 

  22. Casadei B, Moon J, Johnston J, Caiazza A, and Sleight P, Is respiratory sinus arrhythmia a good index of cardiac vagal tone in exercise? J. Appl. Physiol, 1996, 81(2): 556–564.

    Google Scholar 

  23. Bechbache R R and Duffin J, The entrainment of breathing frequency by exercise rhythm, J. Physiol, 1977, 272(3): 553–561.

    Google Scholar 

  24. Bramble D M and Carrier D R, Running and breathing in mammals, Science, 1983, 219(4582): 251–256.

    Article  Google Scholar 

  25. Kamath M V, Fallen E L, and McKelvie R, Effects of steady state exercise on the power spectrum of heart rate variability, Med. Sci. Sports Exerc., 1991, 23(4): 428–434.

    Google Scholar 

  26. Michelini L C and Stern J E, Exercise-induced neuronal plasticity in central autonomic networks: Role in cardiovascular control, Exp. Physiol, 2009, 94(9): 947–960.

    Article  Google Scholar 

  27. Vanderlei L C, Silva R A, Pastre C M, Azevedo F M, and Godoy M F, Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains, Braz. J. Med. Biol. Res., 2008, 41(10): 854–859.

    Article  Google Scholar 

  28. Nunan D, Jakovljevic G, Donovan G, Hodges L D, Sandercock G R, and Brodie D A, Levels of agreement for RR intervals and short-term heart rate variability obtained from the Polar S810 and an alternative system, Eur. J. Appl. Physiol, 2008, 103(5): 529–537.

    Article  Google Scholar 

  29. Mainardi L T, Bianchi A M, and Cerutti S, Time-frequency and time-varying analysis for assessing the dynamic responses of cardiovascular control, Crit. Rev. Biomed. Eng., 2002, 30(1–3): 175–217.

    Google Scholar 

  30. Lewis M J, Kingsley M, Short A L, and Simpson K, Influence of high-frequency bandwidth on heart rate variability analysis during physical exercise, Biomed Signal Process Control, 1991, 2(1): 34–39.

    Article  Google Scholar 

  31. Torrence C and Compo G P, A practical guide to wavelet analysis, Bull Am. Met. Soc., 1998, 79: 61–78.

    Article  Google Scholar 

  32. Percival D and Walden A, Wavelet Methods for Time Series Analysis, Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  33. Victor R G, Bertocci L A, Pryor S L, and Nunnally R L, Sympathetic nerve discharge is coupled to muscle cell pH during exercise in humans, J. Clin. Invest., 1988, 82(4): 1301–1305.

    Article  Google Scholar 

  34. Rotto D M, Stebbins C L, and Kaufman M P, Reflex cardiovascular and ventilatory responses to increasing H+ activity in cat hindlimb muscle, J. Appl. Physiol, 1989, 67(1): 256–263.

    Google Scholar 

  35. Sinoway L, Phophet S, Gorman I, Mosher T, Shenberger J, Dolecki M, Briggs R, and Zelis R, Muscle acidosis during static exercise is associated with calf vasoconstriction, J. Appl. Physiol, 1989, 66(1): 429–436.

    Google Scholar 

  36. Vissing J, Vissing S F, MacLean D A, Saltin B, Quistorff B, and Haller R G, Sympathetic activation in exercise is not dependent on muscle acidosis: Direct evidence from studies in metabolic myopathies, J. Clin. Invest., 1998, 101(8): 1654–1660.

    Article  Google Scholar 

  37. Hartley L H, Mason J W, Hogan R P, Jones L G, Kotchen T A, Mougey E H, Wherry F E, Pennington L L, and Ricketts P T, Multiple hormonal responses to graded exercise in relation to physical training, J. Appl. Physiol, 1972, 33: 602–606.

    Google Scholar 

  38. Galbo H, Holst J J, and Christensen N J, Glucagon and plasma catecholamine responses to graded and prolonged exercise in man, J. Appl. Physiol, 1975, 38(1): 70–76.

    Google Scholar 

  39. Mazzeo R S, Catecholamine response to acute and chronic exercise, Med. Sci. Sports Exerc., 1991, 23(7): 839–845.

    Google Scholar 

  40. Yamamoto Y, Hughson R L, and Peterson J C, Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis, J. Appl. Physiol, 1991, 71(3): 1136–1142.

    Google Scholar 

  41. Kannankeril P J, Le F K, Kadish A H, and Goldberger J J, Parasympathetic effects on heart rate recovery after exercise, J. Investig. Med., 2004, 52(6): 394–401.

    Article  Google Scholar 

  42. O’Leary D S, Rossi N F, and Churchill P C, Substantial cardiac parasympathetic activity exists during heavy dynamic exercise in dogs, Am. J. Physiol (Heart Circ Physiol), 1997, 273(5): H2135–H2140.

    Google Scholar 

  43. Potts J T, Shi X R, and Raven P B, Carotid baroreflex responsiveness during dynamic exercise in humans, Am. J. Physiol (Heart Circ Physiol), 1993, 265(6): H1928–H1938.

    Google Scholar 

  44. Papelier Y, Escourrou P, Gauthier J P, and Rowell L B, Carotid baroreflex control of blood pressure and heart rate in men during dynamic exercise, J. Appl. Physiol, 1994, 77(2): 502–506.

    Google Scholar 

  45. Robinson B F, Epstein S E, Beiser G D, and Braunwald E, Control of heart rate by the autonomic nervous system: Studies in man on the interrelations between baroreceptor mechanisms and exercise, Circ. Res., 1996, 19: 400–411.

    Article  Google Scholar 

  46. Nakamura Y, Yamamoto Y, and Muraoka I, Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability, J. Appl. Physiol, 1993, 74(2): 875–881.

    Google Scholar 

  47. Cottin F, Papelier Y, and Escourrou P, Effects of exercise load and breathing frequency on heart rate and blood pressure variability during dynamic exercise, Int. J. Sports Med., 1999, 20(4): 232–238.

    Article  Google Scholar 

  48. Yamamoto Y, Hughson R L, and Nakamura Y, Autonomic nervous system responses to exercise in relation to ventilatory threshold, Chest, 1992, 101(5): 206S–210S.

    Article  Google Scholar 

  49. Cottin F, Leprêtre P M, Lopes P, Papelier Y, Médigue C, and Billat V, Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling, Int. J. Sports Med., 2006, 27(12): 959–967.

    Article  Google Scholar 

  50. García-Manso J M, Sarmiento S, Martín-González J M, Calderón F J, and Da Silva-Grigoletto M E, Wavelet transform analysis of heart rate variability for determining ventilatory thresholds in cyclists, Rev. Andal. Med. Deporte, 2008, 1(3): 90–97.

    Google Scholar 

  51. Blain G, Meste O, Blain A, and Bermon S, Time-frequency analysis of heart rate variability reveals cardiolocomotor coupling during dynamic cycling exercise in humans, Am. J. Physiol Heart Circ Physiol, 2009, 296(5): H1651-1659.

    Google Scholar 

  52. Lunt H C, Corbett J, Barwood M J, and Tipton M J, Cycling cadence affects heart rate variability, Physiol Meas, 2011, 32(8): 1133–1145.

    Article  Google Scholar 

  53. Macor F, Fagaard R, and Amery A, Power spectral analysis of RR interval and blood pressure shortterm variability at rest and during dynamic exercise: Comparison between cyclists and controls, Int. J. Sports Med., 1996, 17(3): 175–171.

    Article  Google Scholar 

  54. Niizeki K, Intramuscular pressure-induced inhibition of cardiac contraction: Implications for cardiaclocomotor synchronization, Am. J. Physiol Regul. Integr. Comp. Physiol, 2005, 288(3): R645–R650.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzo Edir Da Silva-Grigoletto.

Additional information

This paper was recommended for publication by Editors FENG Dexing and HAN Jing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarmiento, S., García-Manso, J.M., Martín-González, J.M. et al. Heart rate variability during high-intensity exercise. J Syst Sci Complex 26, 104–116 (2013). https://doi.org/10.1007/s11424-013-2287-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-013-2287-y

Key words

  • Cycling
  • heart rate variability
  • wavelet