Skip to main content
Log in

Preventing rumor spreading on small-world networks

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript


Since the spreading of harmful rumors can deeply endanger a society, it is valuable to investigate strategies that can efficiently prevent hazardous rumor propagation. To conduct this investigation, the authors modify the SIR model to describe rumor propagation on networks, and apply two major immunization strategies, namely, the random immunization and the targeted immunization to the rumor model on a small-world network. The authors find that when the average degree of the network is small, both two strategies are effective and when the average degree is large, neither strategy is efficient in preventing rumor propagation. In the latter case, the authors propose a new strategy by decreasing the credibility of the rumor and applying either the random or the targeted immunization at the same time. Numerical simulations indicate that this strategy is effective in preventing rumor spreading on the small-world network with large average degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. R. Albert and A. L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys., 2002, 74: 47–97.

    Article  MATH  Google Scholar 

  2. M. E. J. Newman, The structure and function of complex networks, SIAM Rev., 2003, 45(2): 167–256.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Boccaletti, et al., Complex networks: Structure and dynamics, Physics Reports, 2006, 424: 175–308.

    Article  MathSciNet  Google Scholar 

  4. D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-world’ networks, Nature, 1998, 393: 440–442.

    Article  Google Scholar 

  5. M. E. J. Newman and D. J. Watts, Renormalization group analysis of the small-world network model, Physics Letters A, 1999, 263: 341–346.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. E. J. Newman, Spread of epidemic disease on networks, Phys. Rev. E, 2002, 66: 016128.

    Article  MathSciNet  Google Scholar 

  7. Y. Moreno, R. Pastor-Satorras, and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Euro. Phys. J. B, 2002, 26(4): 521–529.

    Google Scholar 

  8. M. Kuperman and G. Abramson, Small world effect in an epidemiological model, Phys. Rev. Lett., 2001, 86: 2909–2912.

    Article  Google Scholar 

  9. C. Moore and M. E. J. Newman, Epidemics and percolation in small-world networks, Phys. Rev. E, 2000, 61: 5678–5682.

    Article  Google Scholar 

  10. A. Vazquez, Spreading dynamics on small-world networks with connectivity fluctuations and correlations, Phys. Rev. E, 2006, 74: 056101.

    Article  MathSciNet  Google Scholar 

  11. F. Bagnoli, P. Liò, and L. Sguanci, Risk perception in epidemic modeling, Phys. Rev. E, 2007, 76: 061904.

    Article  Google Scholar 

  12. R. Huerta and L. S. Tsimring, Contact tracing and epidemics control in social networks, Phys. Rev. E, 2002, 66: 056115.

    Article  Google Scholar 

  13. R. Pastor-Satorras and A. Vespignani, Immunization of complex networks, Phys. Rev. E, 2002, 65: 036104.

    Article  Google Scholar 

  14. R. Cohen, S. Havlin, and D. Ben-Avraham, Efficient immunization strategies for computer networks and populations, Phys. Rev. Lett., 2003, 91: 247901.

    Article  Google Scholar 

  15. D. J. Daley and J. Gani, Epidemic Modelling, Cambridge University Press, Cambridge, UK, 2000.

    Google Scholar 

  16. D. H. Zanette, Critical behavior of propagation on small-world networks, Phys. Rev. E, 2001, 64: 050901.

    Article  Google Scholar 

  17. D. H. Zanette, Dynamics of rumor propagation on small-world networks, Phys. Rev. E, 2002, 65: 041908.

    Article  Google Scholar 

  18. Y. Moreno, M. Nekovee, and A. F. Pacheco, Dynamics of rumor spreading in complex networks, Phys. Rev. E, 2004, 69: 066130.

    Article  Google Scholar 

  19. Z. H. Liu, Y. C. Lai, and N. Ye, Propagation and immunization of infection on general networks with both homogeneous and heterogeneous components, Phys. Rev. E, 2003, 67: 031911.

    Article  Google Scholar 

  20. D. H. Zanette and M. Kuperman, Effects of immunization in small-world epidemics, Physica A, 2002, 309: 445–452.

    Article  MATH  Google Scholar 

  21. N. Madar, et al., Immunization and epidemic dynamics in complex networks, Eur. Phys. J. B, 2004, 38: 269–276.

    Article  Google Scholar 

  22. F. C. Santos, J. F. Rodrigues, and J. M. Pacheco, Epidemic spreading and cooperation dynamics on homogeneous small-world networks, Phys. Rev. E, 2005, 72: 056128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiaogang Jin.

Additional information

This research is supported by the Natural Science Foundation of China under Grant No. 61070069 and Zhejiang Provincial Natural Science Foundation of China under Grant No. Y1100290.

This paper was recommended for publication by Editor Jinhu LÜ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Jin, X. Preventing rumor spreading on small-world networks. J Syst Sci Complex 24, 449–456 (2011).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

Key words