Skip to main content

Detecting community structure: From parsimony to weighted parsimony

Abstract

Community detection has attracted a great deal of attention in recent years. A parsimony criterion for detecting this structure means that as minimal as possible number of inserted and deleted edges is needed when we make the network considered become a disjoint union of cliques. However, many small groups of nodes are obtained by directly using this criterion to some networks especially for sparse ones. In this paper we propose a weighted parsimony model in which a weight coefficient is introduced to balance the inserted and deleted edges to ensure the obtained subgraphs to be reasonable communities. Some benchmark testing examples are used to validate the effectiveness of the proposed method. It is interesting that the weight here can be determined only by the topological features of the network. Meanwhile we make some comparison of our model with maximizing modularity Q and modularity density D on some of the benchmark networks, although sometimes too many or a little less numbers of communities are obtained with Q or D, a proper number of communities are detected with the weighted model. All the computational results confirm its capability for community detection for the small or middle size networks.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the Internet topology, Comput. Commun. Rev., 1999, 29: 251–262.

    Article  Google Scholar 

  2. [2]

    M. E. J. Newman and J. Park, Why social networks are different from other types of networks, Phys. Rev. E, 2003, 68: 036122.

    Article  Google Scholar 

  3. [3]

    J. Scott, Social Network Analysis: A Handbook, 2nd ed., Sage Publications, London, 2000.

    Google Scholar 

  4. [4]

    E. Almaas, B. Kovács, T. Vicsek, et al., Global organization of metabolic fluxes in the bacterium Escherichia coli, Nature, 2004, 427: 839–843.

    Article  Google Scholar 

  5. [5]

    F. Rao and A. Caflau]isch, The protein folding network, J. Mol. Biol., 2004, 342: 299–306.

    Article  Google Scholar 

  6. [6]

    J. A. Dunne, R. J. Williams, and N. D. Martinez, Food-web structure and network theory: The role of connectance and size, Proc. Natl. Acad. Sci., 2002, 99: 12917–12922.

    Article  Google Scholar 

  7. [7]

    M. Girvan and M. E. J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci., 2002, 99: 7821–7826.

    MATH  Article  MathSciNet  Google Scholar 

  8. [8]

    M. E. J. Newman, Finding community structure in networks using the eigenvectors of matrices, Phys. Rev. E, 2006, 74: 036104.

    Article  MathSciNet  Google Scholar 

  9. [9]

    M. E. J. Newman, Modularity and community structure in networks, Proc. Natl Acad. Sci., 2006, 103: 8577–8582.

    Article  Google Scholar 

  10. [10]

    M. E. J. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E, 2004, 69: 026113.

    Article  Google Scholar 

  11. [11]

    S. Fortunatoa and C. Castellano, Community structure in graphs, arXiv: 0712.2716 [physics.socph], 2007.

  12. [12]

    M. A. Porter, J. P. Onnela, and P. J. Mucha, Communities in networks, arXiv: 0902.3788 [physics.socph], 2009.

  13. [13]

    W. Y. C. Chen, A. W. M. Dress, and W. Q. Yu, Checking the reliability of a linear-programming based approach towards detecting community structures in networks, IET Syst. Biol., 2007, 1: 286–291.

    Article  Google Scholar 

  14. [14]

    W. Y. C. Chen, A.W. M. Dress, and W. Q. Yu, Community structures of networks, Math. Comput. Sci., 2008, 1: 441–457.

    MATH  Article  MathSciNet  Google Scholar 

  15. [15]

    A. Clauset, C. Moore, and M. E. J. Newman, Hierarchical structure and the prediction of missing links in networks, Nature, 2008, 453: 98–101.

    Article  Google Scholar 

  16. [16]

    W. E, T. Li, and E. Vanden-Eijnden, Optimal partition and effective dynamics of complex networks, Proc. Natl. Acad. Sci., 2008, 105: 7907–7912.

    Article  MathSciNet  Google Scholar 

  17. [17]

    M. Rosvall and C. T. Bergstrom, Maps of random walks on complex networks reveal community structure, Proc. Natl. Acad. Sci., 2008, 105: 1118–1123.

    Article  Google Scholar 

  18. [18]

    J. Zhang, S. Zhang, and X. S. Zhang, Detecting community structure in complex networks based on a measure of information discrepancy, Physica A, 2008, 387: 1675–1682.

    Article  Google Scholar 

  19. [19]

    Z. Li, S. Zhang, R. S. Wang, X. S. Zhang, and L. Chen, Quantitative function for community detection, Phys. Rev. E, 2008, 77: 036109.

    Article  Google Scholar 

  20. [20]

    J. Reichardt and S. Bornholdt, Detecting fuzzy community structures in complex networks with a Potts model, Phys. Rev. Lett., 2004, 93: 218701.

    Article  Google Scholar 

  21. [21]

    J. Reichardt and S. Bornholdt, Statistical mechanics of community detection, Phys. Rev. E, 2006, 74: 016110.

    Article  MathSciNet  Google Scholar 

  22. [22]

    P. Ronhovde and Z. Nussinov, Local resolution-limit-free Potts model for community detection, arXiv: 0803.2548 [physics.soc-ph], 2008.

  23. [23]

    J. M. Kumpula, M. Kivelä, K. Kaski, and J. Saramäki, A sequential algorithm for fast clique percolation, arXiv: 0805.1449 [physics.soc-ph], 2008.

  24. [24]

    G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature, 2005, 435: 814–818.

    Article  Google Scholar 

  25. [25]

    J. Zhang, S. Zhang, and X. S. Zhang, Comparative study on a class of evaluation indices for community detection, Lecture notes in operations research, Optimization and Systems Biology, 2008, 9: 294–303.

    Google Scholar 

  26. [26]

    S. Fortunato and M. Barthlemy, Resolution limit in community detection, Proc. Natl. Acad. Sci., 2007, 104: 36–41.

    Article  Google Scholar 

  27. [27]

    M. Rosvall and C. T. Bergstrom, An information-theoretic framework for resolving community structure in complex networks, Proc. Natl. Acad. Sci., 2007, 104: 7327–7331.

    Article  Google Scholar 

  28. [28]

    M. Grötschel and Y. Wakabayashi, A cutting plane algorithm for a clustering problem, Mathematical Programming, 1989, 45: 59–96.

    MATH  Article  MathSciNet  Google Scholar 

  29. [29]

    M. Grötschel and Y. Wakabayashi, Facets of the clique partitioning polytope, Mathematical Programming, 1990, 47: 367–387.

    MATH  Article  MathSciNet  Google Scholar 

  30. [30]

    R. Guimerà and L. A. N. Amaral, Functional cartography of complex metabolic networks, Nature, 2005, 433: 895–900.

    Article  Google Scholar 

  31. [31]

    W. W. Zachary, An information flow model for conflict and fission in small groups, J. Anthropol. Res., 1977, 33: 452–473.

    Google Scholar 

  32. [32]

    M. E. J. Newman, Detecting community structure in networks, Eur. Phys. J. B, 2004, 38: 321–330.

    Article  Google Scholar 

  33. [33]

    F. Radicchi, C. Castellano, F. Cecconi, et al., Defining and identifying communities in networks, Proc. Natl Acad. Sci., 2004, 101: 2658–2663.

    Article  Google Scholar 

  34. [34]

    F. Wu and B. A. Huberman, Finding communities in linear time: a physics approach, Eur. Phys. J. B., 2004, 38: 331–338.

    Article  Google Scholar 

  35. [35]

    D. J. Watts and S. Strogatz, Collective dynamics of ’small-world’ networks, Nature, 1998, 393: 440–442.

    Article  Google Scholar 

  36. [36]

    E. Ravasz, A. L. Somera, D. A. Mongru, et al., Hierarchical organization of modularity in metabolic networks, Science, 2002, 297: 1551–1555.

    Article  Google Scholar 

  37. [37]

    A. Lancichinetti, S. Fortunato, and J. Kertész, Detecting the overlapping and hierarchical community structure in complex networks, New J. Phys., 2009, 11: 033015.

    Article  Google Scholar 

  38. [38]

    S. Zhang, R. S. Wang, and X. S. Zhang, Identification of overlapping community structure in complex networks using fuzzy c-means clustering, Physica A, 2007, 374: 483–490.

    Article  Google Scholar 

  39. [39]

    S. Zhang, R. S. Wang, and X. S. Zhang, Uncovering fuzzy community structure in complex networks, Phys. Rev. E, 2007, 76: 046103.

    Article  Google Scholar 

  40. [40]

    D. Lusseau, K. Schneider, O. J. Boisseau, et al., The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations, Behav. Ecol. Sociobiol., 2003, 54: 396–405.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junhua Zhang.

Additional information

This research is partially supported by the National Natural Science Foundation of China under Grant No. 60873205, Innovation Project of Chinese Academy of Sciences, kjcsyw-s7.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, J., Qiu, Y. & Zhang, XS. Detecting community structure: From parsimony to weighted parsimony. J Syst Sci Complex 23, 1024–1036 (2010). https://doi.org/10.1007/s11424-010-0204-1

Download citation

Key words

  • Cliques
  • community detection
  • complex networks
  • parsimony