Skip to main content

Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient

Abstract

This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bilinear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mesh independent of the interface with local refinement at any locations needed even if the interface has a nontrivial geometry. Numerical examples are provided to show features of these methods.

This is a preview of subscription content, access via your institution.

References

  1. W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, Tech. Report No. LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

  2. P. Lasaint and P. A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical Aspects of Finite Elements in Partial Differential Equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Academic Press, New York, 1974, 89–123.

    Google Scholar 

  3. C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp., 1986, 46(173): 1–26.

    MATH  MathSciNet  Google Scholar 

  4. B. Cockburn and J. Guzmán, Error estimates for the Runge-Kutta discontinuous Galerkin method for the transport equation with discontinuous initial data, SIAM J. Numer. Anal., 2008, 46(3): 1364–1398.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Cockburn, S. C. Hou, and C. W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, IV. The multidimensional case, Math. Comp., 1990, 54(190): 545–581.

    MATH  MathSciNet  Google Scholar 

  6. B. Cockburn and C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, II. General framework, Math. Comp., 1989, 52(186): 411–435.

    MATH  MathSciNet  Google Scholar 

  7. J. Qiu, T. Liu, and B. C. Khoo, Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method, Commun. Comput. Phys., 2008, 3(2): 479–504.

    MATH  MathSciNet  Google Scholar 

  8. H. Zhu and J. Qiu, Adaptive Runge-Kutta discontinuous Galerkin methods using different indicators: one-dimensional case, J. Comput. Phys., 2009, 228(18): 6957–6976.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Zhu, J. Qiu, C. W. Shu, and M. Dumbser, Runge-Kutta discontinuous Galerkin method using WENO limiters, II. Unstructured meshes, J. Comput. Phys., 2008, 227(9): 4330–4353.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Burman and B. Stamm, Local discontinuous Galerkin method with reduced stabilization for diffusion equations, Commun. Comput. Phys., 2009, 5(2–4): 498–514.

    MathSciNet  Google Scholar 

  11. B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 1998, 35(6): 2440–2463.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Dong and C. W. Shu, Analysis of a local discontinuous Galerkin method for linear timedependent fourth-order problems, SIAM J. Numer. Anal., 2009, 47(5): 3240–3268.

    Article  MathSciNet  Google Scholar 

  13. J. Guzmán, Local and pointwise error estimates of the local discontinuous Galerkin method applied to the Stokes problem, Math. Comp., 2008, 77(263): 1293–1322.

    Article  MathSciNet  Google Scholar 

  14. J. Haink and C. Rohde, Local discontinuous-Galerkin schemes for model problems in phase transition theory, Commun. Comput. Phys., 2008, 4(4): 860–893.

    MathSciNet  Google Scholar 

  15. G. Kanschat, Block preconditioners for LDG discretizations of linear incompressible flow problems, J. Sci. Comput., 2005, 22/23: 371–384.

    Article  MathSciNet  Google Scholar 

  16. W. Wang and C. W. Shu, The WKB local discontinuous Galerkin method for the simulation of Schrödinger equation in a resonant tunneling diode, J. Sci. Comput., 2009, 40(1–3): 360–374.

    Article  MathSciNet  Google Scholar 

  17. Y. Xu and C. W. Shu, Local discontinuous Galerkin method for the Hunter-Saxton equation and its zero-viscosity and zero-dispersion limits, SIAM J. Sci. Comput., 2008, 31(2): 1249–1268.

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Fan, W. Cai, and X. Ji, A full vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) for nonsmooth electromagnetic fields in waveguides, J. Comput. Phys., 2008, 227(15): 7178–7191.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Fan, W. Cai, and X. Ji, A generalized discontinuous Galerkin (GDG) method for schrödinger equations with nonsmooth solutions, J. Comput. Phys., 2008, 227(4): 2387–2410.

    Article  MATH  MathSciNet  Google Scholar 

  20. V. Girault, S. Sun, M. F. Wheeler, and I. Yotov, Coupling discontinuous Galerkin and mixed finite element discretizations using mortar finite elements, SIAM J. Numer. Anal., 2008, 46(2): 949–979.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Kumar, N. Nataraj, and A. K. Pani, Discontinuous galerkin finite volume element methods for second-order linear elliptic problems, Numer. Methods Partial Differential Equations, 2009, 25(6): 1402–1424.

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Wang, A uniform optimal-order estimate for an Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations, Numer. Methods Partial Differential Equations, 2009, 25(1): 87–109.

    Article  MATH  MathSciNet  Google Scholar 

  23. K. Wang, H. Wang, M. Al-Lawatia, and H. Rui, A family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations and their optimal-order L 2 error estimates, Commun. Comput. Phys., 2009, 6(1): 203–230.

    Article  MathSciNet  Google Scholar 

  24. J. Peraire and P. O. Persson, The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM J. Sci. Comput., 2008, 30(4): 1806–1824.

    Article  MathSciNet  Google Scholar 

  25. P. E. Bernard, J. F. Remacle, R. Comblen, V. Legat, and K. Hillewaert, High-order discontinuous Galerkin schemes on general 2D manifolds applied to the shallow water equations, J. Comput. Phys., 2009, 228(17): 6514–6535.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. K. Djoko, Discontinuous Galerkin finite element methods for variational inequalities of first and second kinds, Numer. Methods Partial Differential Equations, 2008, 24(1): 296–311.

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Pesch and J. J. W. van der Vegt, A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids, J. Comput. Phys., 2008, 227(11): 5426–5446.

    Article  MATH  MathSciNet  Google Scholar 

  28. F. Prill, M. Lukáčová-Medvidová, and R. Hartmann, Smoothed aggregation multigrid for the discontinuous Galerkin method, SIAM J. Sci. Comput., 2009, 31(5): 3503–3528.

    Article  MathSciNet  Google Scholar 

  29. M. Restelli and F. X. Giraldo, A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling, SIAM J. Sci. Comput., 2009, 31(3): 2231–2257.

    Article  MATH  MathSciNet  Google Scholar 

  30. G. Sun, D. Liang, and W. Wang, Numerical analysis to discontinuous Galerkin methods for the age structured population model of marine invertebrates, Numer. Methods Partial Differential Equations, 2009, 25(2): 470–493.

    Article  MATH  MathSciNet  Google Scholar 

  31. Z. Xu, Y. Liu, and C. W. Shu, Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells, J. Comput. Phys., 2009, 228(6): 2194–2212.

    Article  MATH  MathSciNet  Google Scholar 

  32. B. Cockburn, G. E. Karniadakis, and C. W. Shu, The development of discontinuous Galerkin methods. Discontinuous Galerkin methods (Newport, RI, 1999), Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2000, 11: 3–50.

    MathSciNet  Google Scholar 

  33. D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal, 1982, 19:742–760.

    Article  MATH  MathSciNet  Google Scholar 

  34. I. Babuska, C. E. Baumann, and J. T. Oden, A discontinuous hp finite element method for diffusion problems: 1D analysis, Comput. & Math. Appl., 1999, 37: 103–122.

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Lecture Notes in Physics, 1976, 58: 207–216.

    Article  MathSciNet  Google Scholar 

  36. J. T. Oden, I. Babuska, and C. E. Baumann, A discontinuous hp finite element method for diffusion problems, J. Comput. Phys, 1998, 146: 491–519.

    Article  MATH  MathSciNet  Google Scholar 

  37. B. Rivière, M. F. Wheeler, and V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems Part 1, Comput. Geosci., 1999, 3: 337–360.

    Article  MATH  MathSciNet  Google Scholar 

  38. T. Sun, Discontinuous Galerkin finite element method with interior penalties for convection diffusion optimal control problem, Int. J. Numer. Anal. Mod., 2010, 7(1): 87–107.

    Google Scholar 

  39. T. Sun and D. Yang, Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations, Numer. Methods Partial Differential Equations, 2008, 24(3): 879–896.

    Article  MATH  MathSciNet  Google Scholar 

  40. M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal, 1978, 15: 152–161.

    Article  MATH  MathSciNet  Google Scholar 

  41. H. Chen and Z. Chen, Stability and convergence of mixed discontinuous finite element methods for second-order differential problems, J. Numer. Math., 2003, 11(4): 253–287.

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Chen, Z. Chen, and B. Li, Numerical study of the hp version of mixed discontinuous finite element methods for reaction-diffusion problems: the 1D case, Numer. Methods Partial Differential Equations, 2003, 19(4): 525–553.

    Article  MATH  MathSciNet  Google Scholar 

  43. Z. Chen, Finite Element Methods and Their Applications, Scientific Computation, Springer-Verlag, Berlin, 2005.

    Google Scholar 

  44. D. N. Arnold, F. Brezzi, B. Cockburn L. D. and Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 2001, 39(5): 1749–1779.

    Article  MathSciNet  Google Scholar 

  45. Z. Chen, On the relationship of various discontinuous finite element methods for second-order elliptic equations, East-West J. Numer. Math., 2001, 9(2): 99–122.

    MATH  MathSciNet  Google Scholar 

  46. I. Babuska, The finite element method with penalty, Math. Comp., 1973, 27: 221–228.

    MATH  MathSciNet  Google Scholar 

  47. I. Babuska and M. Zlamal, Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal., 1973, 10: 863–875.

    Article  MATH  MathSciNet  Google Scholar 

  48. M. Delves and C. A. Hall, An implicit matching principle for global element calculations, J. Inst. Math. Appl, 1979, 23: 223–234.

    Article  MATH  MathSciNet  Google Scholar 

  49. M. J. Grote, A. Schneebeli, and D. Schötzau, Interior penalty discontinuous Galerkin method for Maxwell’s equations: energy norm error estimates, J. Comput. Appl. Math., 2007, 204(2): 375–386.

    Article  MATH  MathSciNet  Google Scholar 

  50. T. J. R. Hughes, G. Engel, L. Mazzei, and M. G. Larson, A comparison of discontinuous and continuous Galerkin methods based on error estimates, conservation, robustness and efficiency, in Discontinuous Galerkin Methods, Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, 2000, 11: 135–146.

    MathSciNet  Google Scholar 

  51. G. Kanschat and R. Rannacher, Local error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problems, J. Numer. Math., 2002, 10(4): 249–274.

    MATH  MathSciNet  Google Scholar 

  52. B. Heinrich, Finite Difference Methods on Irregular Networks, volume 82 of International Series of Numerical Mathematics, Birkhäuser, Boston, 1987.

    Google Scholar 

  53. I. Babuška, The finite element method for elliptic equations with discontinuous coefficients, Computing, 1970, 5: 207–213.

    Article  MATH  Google Scholar 

  54. J. H. Bramble and J. T. King, A finite element method for interface problems in domains with smooth boundary and interfaces, Adv. Comput. Math., 1996, 6: 109–138.

    Article  MathSciNet  Google Scholar 

  55. Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 1998, 79: 175–202.

    Article  MATH  MathSciNet  Google Scholar 

  56. I. Babuška and J. E. Osborn, Can a finite element method perform arbitrarily badly? Math. Comp., 2000, 69(230): 443–462.

    Article  MATH  MathSciNet  Google Scholar 

  57. D. W. Hewitt, The embedded curved boundary method for orthogonal simulation meshes, J. Comput. Phys., 1997, 138: 585–616.

    Article  MathSciNet  Google Scholar 

  58. D. M. Ingram, D. M. Causon, and C. G. Mingham, Developments in Cartesian cut cell methods, Math. Comput. Simulation, 2003, 61(3–6): 561–572.

    Article  MATH  MathSciNet  Google Scholar 

  59. Z. Li and K. Ito, The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, Vol 33 of Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 2006.

    Google Scholar 

  60. C. S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 1977, 25: 220–252.

    Article  MATH  MathSciNet  Google Scholar 

  61. Y. C. Zhou, S. Zhao, M. Feig, and G. W. Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys, 2006, 213(1): 1–30.

    Article  MATH  MathSciNet  Google Scholar 

  62. I. Babuška and J. Melenk, The partition of unity method, Int. J. Numer. Meth. Eng., 1997, 40: 727–758.

    Article  MATH  Google Scholar 

  63. I. Babuška and J. E. Osborn. Finite element methods for the solution of problems with rough input data. In P. Grisvard, W. Wendland, and J.R. Whiteman, editors, Singular and Constructive Methods for their Treatment, Lecture Notes in Mathematics, New York, Springer-Verlag, 1985, 1–18.

    Chapter  Google Scholar 

  64. T. Belytschko, N. Moës, S. Usui, and C. Primi, Arbitrary discontinuities in finite elements, Int. J. Numer. Meth. Eng., 2001, 50: 993–1013.

    Article  MATH  Google Scholar 

  65. R. E. Ewing, H. Wang, and T.F. Russell, Eulerian-Lagrangian localized adjoint methods fo convection-diffusion equations and their convergence analysis, IMA J. Numer. Anal., 1995, 15: 405–495.

    Article  MATH  MathSciNet  Google Scholar 

  66. S. Adjerid and T. Lin, Higher-order immersed discontinuous Galerkin methods, Int. J. Inf. Syst. Sci., 2007, 3(4): 555–568.

    MATH  MathSciNet  Google Scholar 

  67. S. Adjerid and T. Lin, p-th degree immersed finite element for boundary value problems with discontinuous coefficients, Appl. Numer. Math, 2009, 59(6): 1303–1321.

    Article  MATH  MathSciNet  Google Scholar 

  68. B. Camp, T. Lin, Y. Lin, and W. Sun, Quadratic immersed finite element spaces and their approximation capabilities, Adv. Comput. Math., 2006, 24(1–4): 81–112.

    Article  MATH  MathSciNet  Google Scholar 

  69. R. E. Ewing, Z. Li, T. Lin, and Y. Lin, The immersed finite volume element methods for the elliptic interface problems, Modelling’98 (prague), Math. Comput. Simulation, 1999, 50(1–4): 63–76.

    Article  MATH  MathSciNet  Google Scholar 

  70. Y. Gong, B. Li, and Z. Li, Immersed-interface finite-element methods for elliptic interface problems with non-homogeneous jump conditions, SIAM J. Numer. Anal., 2008, 46: 472–495.

    Article  MATH  MathSciNet  Google Scholar 

  71. X. M. He, T. Lin, and Y. Lin, Approximation capability of a bilinear immersed finite element space, Numer. Methods Partial Differential Equations, 2008, 24(5): 1265–1300.

    Article  MATH  MathSciNet  Google Scholar 

  72. X. M. He, T. Lin, and Y. Lin, A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficients, Commun. Comput. Phys., 2009, 6(1): 185–202.

    Article  MathSciNet  Google Scholar 

  73. X. M. He, T. Lin, and Y. Lin, Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., accepted, 2010.

  74. R. Kafafy, T. Lin, Y. Lin, and J. Wang, Three-dimensional immersed finite element methods for electric field simulation in composite materials, Int. J. Numer. Meth. Engrg., 2005, 64(7): 940–972.

    Article  MATH  MathSciNet  Google Scholar 

  75. R. Kafafy, J. Wang, and T. Lin, A hybrid-grid immersed-finite-element particle-in-cell simulation model of ion optics plasma dynamics, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 2005, 12: 1–16.

    MathSciNet  Google Scholar 

  76. Z. Li, The immersed interface method using a finite element formulation, Appl. Numer. Math., 1997, 27(3): 253–267.

    Article  Google Scholar 

  77. Z. Li, T. Lin, Y. Lin, and R. C. Rogers, An immersed finite element space and its approximation capability, Numer. Methods Partial Differential Equations, 2004, 20(3): 338–367.

    Article  MATH  MathSciNet  Google Scholar 

  78. Z. Li, T. Lin, and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 2003, 96(1): 61–98.

    Article  MATH  MathSciNet  Google Scholar 

  79. T. Lin, Y. Lin, R. C. Rogers, and L. M. Ryan, A rectangular immersed finite element method for interface problems, in P. Minev and Y. Lin, editors, Advances in Computation: Theory and Practice, Nova Science Publishers, Inc., 2001, 7: 107–114.

  80. T. Lin, Y. Lin, and W. Sun, Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems, Discrete Contin. Dyn. Syst. Ser. B, 2007, 7(4): 807–823.

    MATH  MathSciNet  Google Scholar 

  81. S. A. Sauter and R. Warnke, Composite finite elements for elliptic boundary value problems with discontinuous coefficients, Computing, 2006, 77(1): 29–55.

    Article  MATH  MathSciNet  Google Scholar 

  82. T. S. Wang, A Hermite cubic immersed finite element space for beam design problems, Master’s thesis, Virginia Polytechnic Institute and State University, 2005.

  83. X. M. He, Bilinear immersed finite elements for interface problems, Ph.D. dissertation, Virginia Polytechnic Institute and State University, 2009.

  84. T. Lin, Y. Lin, R. C. Rogers, and L. M. Ryan, A rectangular immersed finite element method for interface problems, in P. Minev and Y. Lin, Editors, Advances in Computation: Theory and Practice, Nova Science Publishers, Inc., 2001, 7: 107–114.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Additional information

This research is supported by NSF grant DMS-0713763, the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU 501709), the AMSS-PolyU Joint Research Institute for Engineering and Management Mathematics, and NSERC (Canada), and this article is dedicated to Professor David Russell’s 70th birthday.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

He, X., Lin, T. & Lin, Y. Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient. J Syst Sci Complex 23, 467–483 (2010). https://doi.org/10.1007/s11424-010-0141-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-010-0141-z

Key words

  • Adaptive mesh
  • discontinuous Galerkin
  • immersed interface
  • interface problems
  • penalty