Skip to main content
Log in

Convergence analysis in sense of Lebesgue-p norm of decentralized non-repetitive iterative learning control for linear large-scale systems

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, a decentralized iterative learning control strategy is embedded into the procedure of hierarchical steady-state optimization for a class of linear large-scale industrial processes which consists of a number of subsystems. The task of the learning controller for each subsystem is to iteratively generate a sequence of upgraded control inputs to take responsibilities of a sequential step functional control signals with distinct scales which are determined by the local decision-making units in the two-layer hierarchical steady-state optimization processing. The objective of the designated strategy is to consecutively improve the transient performance of the system. By means of the generalized Young inequality of convolution integral, the convergence of the learning algorithm is analyzed in the sense of Lebesgue-p norm. It is shown that the inherent feature of system such as the multi-dimensionality and the interaction may influence the convergence of the non-repetitive learning rule. Numerical simulations illustrate the effectiveness of the proposed control scheme and the validity of the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Findeisen, et al, Control and Coordination in Hierarchical Systems, John Wiley and Sons, Pitman Press, 1980.

    MATH  Google Scholar 

  2. M. S. Mahmoud, M. F. Hassan, and M. C. Darwish, Large-Scale Control Systems, Theories and Techniques, Marcel Dekker, Inc, New York, 1985.

    MATH  Google Scholar 

  3. Z. G. Hou, C. P. Wu, and P. Bao, A neural network for hierarchical optimization of nonlinear large-scale systems, International Journal of Systems Science, 1998, 29(2): 159–166.

    Article  Google Scholar 

  4. M. Jamshidi, Large-Scale Systems: Modeling, Control, and Fuzzy Logic, New Jersey, Prentice-Hall PTR, 1997.

    MATH  Google Scholar 

  5. Z. G. Hou, A hierarchical optimization neural network for large-scale dynamic systems, Automatica, 2001, 37: 1931–1940.

    Article  MATH  Google Scholar 

  6. J. Lin, Z. M. Hendawy, and P. D. Robert, New model-based double loop iterative strategy for integrated system optimization and parameter estimation of large-scale industrial processes, Int. J. Contr., 1988, 47: 753–773.

    Article  MATH  Google Scholar 

  7. P. D. Robert, B. W. Wan, and J. Lin, Steady-state hierarchical control of large-scale industrial process: A Survey IFAC/IFORS/IMACS Symposium Large-scale systems, Theory and Applications, 1992, 1: 1–10.

    Google Scholar 

  8. H. F. Wang, J. Ji, and D. Huang, The application study of microcomputer CIMS in process industry, Proceedings of 6-th Process Control of Chinese Automation Association, Suzhou, China, 1993, 698–703.

    Google Scholar 

  9. J. C. Gu and B. W. Wan, Steady state hierarchical optimizing control for large-scale industrial processes with fuzzy parameters, IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2001, 31(3): 352–360.

    Article  Google Scholar 

  10. G. J. Silva, A. Datta, and S. P. Bhattacharyya, New results on the synthesis of PID controllers, IEEE Trans. on Automatic Control, 2002, 47(2): 241–252.

    Article  MathSciNet  Google Scholar 

  11. B. C. Kuo and M. F. Golnaraghi, Automatic Control System, John Wiley and Sons, INC, 2002.

    Google Scholar 

  12. B. W. Wan and Z. L. Huang, Online Steady-State Optimizing Control for Large-Scale Industrial Processes, Science Press, Beijing, 1998.

    Google Scholar 

  13. C. C. Lee, Fuzzy logic control systems: Fuzzy logic controller-I, II, IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(2): 404–435.

    Article  MATH  Google Scholar 

  14. W. Lin and R. Pongvuthithum, Adaptive output tracking of inherently nonlinear systems with nonlinear parameterization, IEEE Transactions on Automatic Control, 2003, 48(10): 1737–1749.

    Article  MathSciNet  Google Scholar 

  15. A. E. Bryson Jr., Dynamic Optimization, Addison Wesley Longman, Inc, 1999.

    Google Scholar 

  16. Z. Bien and J. X. Xu, Iterative Learning Control: Analysis, Design, Integration and Applications, Boston/Dordrecht/London, Kluwer Academic Publishers, 1999.

    Google Scholar 

  17. S. l. Xie, S. P. Tian, and Z. D. Xie, Theory and Applications of Iterative Learning Control, Science Press, Beijing, 2005.

    Google Scholar 

  18. J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems, IEEE Proc. Control Theory Appl., 2000, 147(2): 217–223.

    Article  Google Scholar 

  19. Y. Chen, Z. Gong, and C. Wen, Analysis of high-order iterative learning control algorithm for uncertain nonlinear system with state delays, Automatica, 1998, 34(3): 345–353.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Arif, T. Ishihara, and H. Inooka, Prediction-based iterative learning control for uncertain dynamic nonlinear systems using identification technique, J. Intelligent and Robotic Systems, 2002, 27: 291–304.

    Article  Google Scholar 

  21. K. Hamamoto and T. Sugie, Iterative learning control for robot manipulators using the finite dimensional input subspace, IEEE Trans. on Robotics and Automation, 2002, 18(4): 632–635.

    Article  Google Scholar 

  22. J. H. Lee, K. S. Lee, and W. C. Kim, Model-based iterative learning control with a quadratic criterion for time-varying linear systems, Automatica, 2000, 36(5): 641–657.

    Article  MATH  MathSciNet  Google Scholar 

  23. W. Tommy, S. Chow, and Y. Fang, An iterative learning control method for continuous-time systems based on 2-D system theory, IEEE Trans. on Circuits and System-I: Fundamental Theory and Applications, 1998, 45(4): 683–689.

    MATH  Google Scholar 

  24. M. X. Sun and D.Wang, Anticipatory iterative learning control for nonlinear systems with arbitrary relative degree, IEEE Trans. on Automatic Control, 2001, 46(5): 783–788.

    Article  MATH  Google Scholar 

  25. S. S. Saab, Robustness and convergence rate of a discrete-time learning control algorithm for a class of nonlinear systems, Int. J. Robust Nonlinear Control, 1999, 9: 559–571.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. H. Hwang, B. K. Kim, and Z. Bien, Decentralized iterative learning control method for large scale linear dynamic systems, International Journal of Systems Science, 1993, 24(12): 2239–2254.

    Article  MATH  MathSciNet  Google Scholar 

  27. H. S. Lee and Z. Bien, A note on convergence property of iterative learning control with respect to sup-norm, Automatica, 1997, 33(8): 1591–1593.

    Article  MATH  MathSciNet  Google Scholar 

  28. K. H. Park and Z. Bien, A study on iterative learning control with adjustment of learning interval for monotone convergence in the sense of sup-norm, Asian Journal of Control, 2002, 4(1): 111–118.

    Google Scholar 

  29. X. E. Ruan, Z. N. Bien, and Kwang-Hyun Park, Iterative learning controllers for discrete-time large-scale systems to track trajectories with distinct magnitudes, International Journal of Systems Science, 2005, 36(4): 221–233.

    Article  MATH  MathSciNet  Google Scholar 

  30. X. E. Ruan and B. W.Wan, Iterative learning control for bilinear industrial process control systems under steady-state optimization, J. Systems Science and Information, 2003, 1(1): 11–20.

    Google Scholar 

  31. J. X. Xu and Y. Tan, Robust optimal design and convergence properties analysis of iterative learning control approaches, Automatica, 2002, 38: 1867–1880.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. X. Xu, Direct learning of control efforts for trajectories with different magnitude scales, Automatica, 1997, 33(12): 2191–2195.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoe Ruan.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. F030101–60574021.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, X., Wu, H., Li, N. et al. Convergence analysis in sense of Lebesgue-p norm of decentralized non-repetitive iterative learning control for linear large-scale systems. J Syst Sci Complex 22, 422–434 (2009). https://doi.org/10.1007/s11424-009-9175-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-009-9175-5

Key words

Navigation