Skip to main content

Skewness of return distribution and coefficient of risk premium

Abstract

The skewness of the return distribution is one of the important features of the security price. In this paper, the authors try to explore the relationship between the skewness and the coefficient of risk premium. The coefficient of the risk premium is estimated by a GARCH-M model, and the robust measurement of skewness is calculated by Groeneveld-Meeden method. The empirical evidences for the composite indexes from 33 securities markets in the world indicate that the risk compensation requirement in the market where the return distribution is positively skewed is virtually zero, and the risk compensation requirement is positive in a significant level in the market where the return distribution is negative skewed. Moreover, the skewness is negatively correlated with the coefficient of the risk premium.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. K. Kraus and R. H. Litzenberger, Skewness preference and the valuation of risky assets, Journal of Finance, 1976, 31: 1085–1185.

    Article  Google Scholar 

  2. 2.

    I. Friend and R. Westerfield, Co-Skewness and capital asset pricing, Journal of Finance, 1980, 35: 897–913.

    Article  Google Scholar 

  3. 3.

    J. C. Singleton and J. Wingender, Skewness persistence in common stock returns, Journal of Financial and Quantitative Analysis, 1986, 21: 335–341.

    Article  Google Scholar 

  4. 4.

    K. G. Lim, A new test of the three-moment capital asset pricing model, Journal of Financial and Quantitative Analysis, 1989, 24: 205–216.

    Article  Google Scholar 

  5. 5.

    R. Aggarwal, R. P. Rao, and T. Hiraki, Skewness and Kurtosis in Japanese equity returns: Empirical evidence, Journal of Financial Research, 1989, 12: 253–260.

    Google Scholar 

  6. 6.

    M. Richardson and T. Smith, A test for multivariate normality in stock returns, Journal of Business, 1993, 66: 295–321.

    Article  Google Scholar 

  7. 7.

    A. L. Alles and J. L. Kling, Regularities in the variation of skewness in asset returns, Journal of Financial Research, 1994, 17: 427–438.

    Google Scholar 

  8. 8.

    C. R. Harvey and A. Siddique, Autoregressive conditional skewness, Journal of Financial and Quantitative Analysis, 1999, 34: 465–552.

    Article  Google Scholar 

  9. 9.

    C. R. Harvey and A. Siddique, Conditional skewness in asset pricing tests, Journal of Finance, 2000a, 60: 1263–1287.

    Article  Google Scholar 

  10. 10.

    Y. Ait-Sahalia and M. W. Brandt, Variable Selection for Portfolio Choice, Journal of Finance, 2001, 56: 1297–1355.

    Article  Google Scholar 

  11. 11.

    A. Peiró, Skewness in financial returns, Journal of Banking and Finance, 1999, 23: 847–909.

    Article  Google Scholar 

  12. 12.

    A. Peiró, Skewness in individual stocks at different investment horizons, Quantitative Finance, 2002, 2: 139–185.

    Article  Google Scholar 

  13. 13.

    R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues, Quantitative Finance, 2001, 1: 223–259.

    Article  Google Scholar 

  14. 14.

    E. Jondeau and M. Rockinger, Testing for differences in the tails of stock market returns, Journal of Empirical Finance, 2003, (10): 559–581.

  15. 15.

    C. R. Harvey and A. Siddique, Time-Varying conditional skewness and the market risk premium, Research in Bank and Finance, 2000b, 1: 25–58.

    Google Scholar 

  16. 16.

    F. D. Arditti, Risk and the required return on equity, Journal of Finance, 1967, 22: 19–36.

    Article  Google Scholar 

  17. 17.

    F. D. Arditti, Another look at mutual fund performance, Journal of Financial and Quantitative Analysis, 1971, 6: 909–912.

    Article  Google Scholar 

  18. 18.

    P. Samuelson, The fundamental approximation of theorem in portfolio analysis in terms of means, variances and higher moments, Review of Economic Studies, 1970, 37: 537–542.

    Article  Google Scholar 

  19. 19.

    M. Rubinstein, The fundamental theorem of parameter preference security valuation, Journal of Financial and Quantitative Analysis, 1973, 8: 61–69.

    Article  Google Scholar 

  20. 20.

    G. Tayi and P. Leonard, Bank balance sheet Management: An alternative multi-objective model, Operational Research Society, 1988, 39: 401–410.

    Google Scholar 

  21. 21.

    T. Y. Lai, Portfolio selection with skewness: A multiple-objective approach, Review of Quantitative Finance and Accounting, 1991, 1: 293–305.

    Article  Google Scholar 

  22. 22.

    P. Chunhachinda, K. Dandapani, S. Hamid, and A. J. Prakash, Portfolio selection and skewness: evidence from international stock markets, Journal of Banking and Finance, 1997, 21: 143–167.

    Article  Google Scholar 

  23. 23.

    H. Fang and T. Lai, Co-Kurtosis and capital asset pricing, the Financial Review, 1997, 32(2): 293–307.

    Article  Google Scholar 

  24. 24.

    A. J. Prakash, C. H. Chang, and T. E. Pactwa, Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets, Journal of Banking and Finance, 2003, 27: 1375–1390.

    Article  Google Scholar 

  25. 25.

    Q. Sun and Y. X. Yan, Skewness persistence with optimal portfolio selection, Journal of Banking and Finance, 2003, 27: 1111–1121.

    Article  Google Scholar 

  26. 26.

    Tae-Hwan Kim and Halbert White, On more robust estimation of skewness and kurtosis, Finance Research Letters, 2004, (1): 56–73.

  27. 27.

    M. A. Canela and E. P. Collazo, Portfolio selection with skewness in emerging markets, Working paper, 2004, IESE Business School.

  28. 28.

    J. M. Vanden, Portfolio insurance and volatility regime switching, Mathematical Finance, 2006, 16: 387–417.

    MATH  Article  MathSciNet  Google Scholar 

  29. 29.

    R. C. Merton, On estimating the expected return on the market, Journal of Financial Economics, 1980, 8: 323–361.

    Article  Google Scholar 

  30. 30.

    M. Rubinstein, Implied binomial trees, Journal of Finance, 1994, 49: 771–818.

    Article  Google Scholar 

  31. 31.

    G. Bakshi, C. Cao, and Z. Chen, Do call prices and the underlying stock always move in the same direction? Review of Financial Studies, 2000, 13: 549–584.

    Article  Google Scholar 

  32. 32.

    Y. Ait-Sahalia and A. W. Lo, Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices, Journal of Finance, 1998, 53: 499–547.

    Article  Google Scholar 

  33. 33.

    D. B. Madan, P. P. Carr, and E. C. Chang, The variance gamma process and option pricing, European Finance Review, 1998, 2: 79–105.

    MATH  Article  Google Scholar 

  34. 34.

    D. Bates, Post-87 crash fears in S and P 500 futures options, Journal of Econometrics, 2000, 94: 181–238.

    MATH  Article  MathSciNet  Google Scholar 

  35. 35.

    D. Duffie, J. Pan, and K. Singleton, Transform analysis and asset pricing for affine Jump-Diffusions, Econometrica, 2000, 68: 1343–1376.

    MATH  Article  MathSciNet  Google Scholar 

  36. 36.

    A. Ang, R. J. Hodrick, Y. Xing, and X. Zhang, The cross-section of volatility and expected returns, Journal of Finance, 2006, 61: 259–299.

    Article  Google Scholar 

  37. 37.

    T. Bollerslev and H. Zhou, Estimating stochastic volatility diffusion using conditional moments of integrated volatility, Journal of Econometrics, 2002, 109(1): 33–65.

    MATH  Article  MathSciNet  Google Scholar 

  38. 38.

    T. Adrian and J. Rosenberg, Stock returns and volatility: Pricing the short-run and long-run components of market risk, Staff Reports 254, 2006, Federal Reserve Bank of New York.

  39. 39.

    G. Bakshi, N. Kapadia, and D. Madan, Stock return characteristics, skewness law, and the differential pricing of individual equity option, the Review of Financial Studies, 2003, 16: 101–143.

    Article  Google Scholar 

  40. 40.

    Anders Ekholm and Daniel Pasternack, The negative news thresholdan explanation for negative skewness in stock returns, the European Journal of Finance, 2005, 11(6): 512529.

    Article  Google Scholar 

  41. 41.

    F. H. Wen, D. L. Huang, Q. J. Lan, and X. G. Yang, Numerical simulation for influence of overconfidence and regret aversion on return distribution (in Chinese), Systems Engineering Theory and Practice, 2007, 27(1): 1–10.

    MATH  Article  Google Scholar 

  42. 42.

    A. L. Bowley, Elements of Statistics, Charles Scribner's Sons, New York, 1920.

    Google Scholar 

  43. 43.

    D. V. Hinkley, On Power Transformations to Symmetry, Biometrika, 1975, 62: 101–111.

    MATH  Article  MathSciNet  Google Scholar 

  44. 44.

    R. A. Groeneveld and G. Meeden, Measuring skewness and kurtosis, the Statistician, 1984, 33: 391–399.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fenghua Wen.

Additional information

This research is supported by China Natural Science Foundation (70701035, 70425004, and 70221001), Hunan Natural Science Foundation (09JJ1010), and the Key Research Institute of Philosophies and Social Sciences in Hunan Universities.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wen, F., Yang, X. Skewness of return distribution and coefficient of risk premium. J Syst Sci Complex 22, 360–371 (2009). https://doi.org/10.1007/s11424-009-9170-x

Download citation

Key words

  • Coefficient of risk premium
  • return distribution
  • robust skewness
  • speculation