Skip to main content
Log in

Performance evaluation for damping controllers of power systems based on multi-agent models

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper proposes a multi-layer multi-agent model for the performance evaluation of power systems, which is different from the existing multi-agent ones. To describe the impact of the structure of the networked power system, the proposed model consists of three kinds of agents that form three layers: control agents such as the generators and associated controllers, information agents to exchange the information based on the wide area measurement system (WAMS) or transmit control signals to the power system stabilizers (PSSs), and network-node agents such as the generation nodes and load nodes connected with transmission lines. An optimal index is presented to evaluate the performance of damping controllers to the system's inter-area oscillation with respect to the information-layer topology. Then, the authors show that the inter-area information exchange is more powerful than the exchange within a given area to control the inter-area low frequency oscillation based on simulation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Lekkas, N. M. Avouris, and G. K. Papakonstantinou, Development of distributed problem solving systems for dynamic environments, IEEE Trans. on Systems, Man, and Cybemetics, 1995, 25(3): 400–414.

    Article  Google Scholar 

  2. S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D. Hatziargyriou, F. Ponci, and T. Funabashi, Multi-agent systems for power engineering applications part I: Concepts, approaches, and technical challenges, IEEE Trans. on Power Systems, 2007, 22(4): 1743–1752.

    Article  Google Scholar 

  3. S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D. Hatziargyriou, F. Ponci, and T. Funabashi, Multi-agent systems for power engineering applications part II: Technologies, standards, and tools for building multi-agent systems, IEEE Trans. on Power Systems, 2007, 22(4): 1753–1758.

    Article  Google Scholar 

  4. G. P. Azevedo, B. Feijo, and M. Costa, Control centers evolve with agent technology, IEEE Computer Applications in Power, 2000, 13: 48–53.

    Article  Google Scholar 

  5. C. S. K. Yeung, A. S. Y. Poon, and F. F. Wu, Game theoretical multi-agent modelling of coalition formation for multilateral trades, IEEE Trans. Power Syst., 1999, 14(3): 929–934.

    Article  Google Scholar 

  6. A. C. Xue and Y. G. Hong, Non-smooth agent-based dynamics of strategic bidding with linear supply function, in Proceedings of the Chinese Control conference, June 25–29, Zhangjiajie, Hunan, China, 2007, 6: 742–746.

  7. Y. Tomita, C. Fukui, H. Kudo, J. Koda, and K. Yabe, A cooperative protection system with an agent model, IEEE Trans. Power Del., 1998, 13(4): 1060–1066.

    Article  Google Scholar 

  8. R. Giovanini, K. Hopkinson, D. V. Coury, and J. S. Thorp, A primary and backup cooperative protection system based on wide area agents, IEEE Trans. Power Del., 2006, 21(3): 1222–1230.

    Article  Google Scholar 

  9. J. A. Hossack, J. Menal, S. D. J. McArthur, and J. R. McDonald, A multi-agent architecture for protection engineering diagnostic assistance, IEEE Trans. Power Syst., 2003, 18(2): 639–647.

    Article  Google Scholar 

  10. S. D. J. McArthur, S. M. Strachan, and G. Jahn, The design of a multi-agent transformer condition monitoring system, IEEE Trans. Power Syst., 2004, 19(4): 1845–1852.

    Article  Google Scholar 

  11. S. D. J. McArthur, C. D. Booth, J. R. McDonald, and I. T. McFadyen, An agent-based anomaly detection architecture for condition monitoring, IEEE Trans. Power Syst., 2005, 20(4): 1675–1682.

    Article  Google Scholar 

  12. H. F. Wang, H. Li, and H. Chen, Coordinated secondary voltage control to eliminate voltage violations in power system contingencies, IEEE Trans. Power Syst., 2003, 18(2): 588–595.

    Article  Google Scholar 

  13. M. E. Baran and I. M. El-Markabi, A multi-agent-based dispatching scheme for distributed generators for voltage support on distribution feeders, IEEE Trans. Power Syst., 2007, 22(1): 52–59.

    Article  Google Scholar 

  14. T. Nagata and H. Sasaki, A multi-agent approach to power system restoration, IEEE Trans. Power Syst., 2002, 17(2): 457–462.

    Article  Google Scholar 

  15. E. E. Mangina, S. D. J. McArthur, J. R. McDonald, and A. Moyes, A multi-agent system for monitoring industrial gas turbine start-up sequences, IEEE Trans. Power Syst., 2001, 16(3): 396–401.

    Article  Google Scholar 

  16. M. M. Nordman and M. Lehtonen, Distributed agent-based state estimation for electrical distribution networks, IEEE Trans. Power Syst., 2005, 2(2): 652–658.

    Article  Google Scholar 

  17. D. P. Buse, P. Sun, Q. H. Wu, and J. Fitch, Agent-based substation automation, IEEE Power Energy Mag., 2003, 1(2): 50–55.

    Article  Google Scholar 

  18. C. C. Liu, J. Jung, G. T. Heydt, V. Vittal, and A. G. Phadke, The strategic power infrastructure defense (SPID) system, a conceptual design, IEEE Control Syst. Mag., 2000, 20(4): 40–52.

    Article  Google Scholar 

  19. H. Ni, G. T. Heydt, and L. Mili. Power system stability agents using robust wide area control, IEEE Trans. Power Syst., 2002, 17(4): 1123–1131.

    Article  Google Scholar 

  20. M. E. Aboul-Ela, A. A. Sallam, J. D. McCalley, and A. A. Fouad, Damping controller design for power system oscillations using global signals, IEEE Trans. Power Systems, 1996, 11(2): 767–773.

    Article  Google Scholar 

  21. T. Hiyama, M. Kawakita, and H. Ono, Multi-agent based wide area stabilization control of power systems using power system stabilizer, Int. Conf. on Power System Technology, 2004, 1239-1244

  22. P. Kundur, Power System Stability and Control, Mc-Graw-Hill, New York, 1992.

    Google Scholar 

  23. A. G. Phadke, Synchronised phasor measurements–a historical overview, in Proc.IEEE/PES Transmission and Distribution Conf. Exhib., Asia Pacific, 2000, 476–479.

  24. IEEE Std. C37.118-2005, (Revision of IEEE Std 1344–1955) IEEE Standard for Synchrophasors for Power Systems, 2005.

  25. J. H. Chow, J. J. Sanchez-Gasca, H. Ren, and S. Wang, Power system damping controller design using multiple input signals, IEEE Contr. Syst. Mag., 2000, 20(4): 82–90.

    Article  Google Scholar 

  26. X. Xie, J. Xiao, C. Lu, and Y. Han, Wide-area stability control for damping interarea oscillations of interconnected power systems, IEEE Proc.-Gener. Transm. Distrib., 2006, 153(5): 507–514.

    Article  Google Scholar 

  27. C. R. Houck, J. A. Jones, and M. G. Kay, A genetic algorithm for function optimization: A Matlab implementation, NCSU-IE TR 95-09, 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ancheng Xue.

Additional information

This work was supported in part by the National Natural Science Foundation of China under Grants Nos. 50707035, 50595411, 60425307, 60221301, and 50607005, in part by the 111 project (B08013) and Program for Changjiang Scholars and Innovative Research Team in University (IRT0515) and in part by the Program for New Century Excellent Talents in University (NCET-05-0216).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, A., Hong, Y. Performance evaluation for damping controllers of power systems based on multi-agent models. J Syst Sci Complex 22, 77–87 (2009). https://doi.org/10.1007/s11424-009-9148-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-009-9148-8

Key words

Navigation