Fostering scientific understanding and epistemic beliefs through judgments of promisingness

  • Bodong ChenEmail author
Research Article


The evaluation of promisingness is central to knowledge building and knowledge creation but remains largely unexplored. As part of a design-based research program to support promisingness judgments, the present study implemented an intervention in a sixth grade science class, with the goal of exploring the potential of promisingness judgments to foster scientific understanding and epistemic beliefs. Aided by a Promising Ideas Tool and pedagogical supports designed for this intervention, students explored the concept of promisingness, judged the promisingness of their community ideas, and engaged in iterative cycles of idea refinement. Results indicated that students were capable of improving their understanding of promisingness and making promisingness judgments deemed sensible by domain experts. The conceptual understanding and epistemic beliefs displayed by students improved over the course of the intervention, and such improvement happened in tandem with students’ understanding of promisingness. The implications of this exploratory study and future research are discussed.


Knowledge building CSCL Science learning Epistemic beliefs Metacognition Promisingness 



The author’s travel to the research site was funded by the School of Graduate Studies Travel Grant at the University of Toronto. The author thanks Jennifer González Abril, Fernando Díaz del Castillo, James D. Slotta, and the Institute for Knowledge Innovation and Technology for their generous support for this research.


  1. Barman, C. R., Griffiths, A. K., & Okebukola, P. A. O. (1995). High school students’ concepts regarding food chains and food webs: A multinational study. International Journal of Science Education, 17(6), 775–782. doi: 10.1080/0950069950170608.CrossRefGoogle Scholar
  2. Bereiter, C. (2002a). Design research for sustained innovation. Cognitive Studies, 9(3), 321–327.Google Scholar
  3. Bereiter, C. (2002b). Education and mind in the knowledge age. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  4. Bereiter, C. (2009). Innovation in the absence of principled knowledge: The case of the Wright Brothers. Creativity and Innovation Management, 18(3), 234–241. doi: 10.1111/j.1467-8691.2009.00528.x.CrossRefGoogle Scholar
  5. Bereiter, C. (2012). Theory building and education for understanding. In M. Peters, T. Besley, A. Gibbons, B. Žarnić, & P. Ghiraldelli (Eds.), The encyclopaedia of educational philosophy and theory. Retrieved from
  6. Bereiter, C., & Scardamalia, M. (1993). Surpassing ourselves: An inquiry into the nature and implications of expertise. Chicago, La Salle, IL: Open Court.Google Scholar
  7. Bereiter, C., & Scardamalia, M. (2003). Learning to work creatively with knowledge. In E. De Corte, L. Verschaffel, N. Entwistle, & J. van Merrienboer (Eds.), Powerful learning environments: Unravelling basic components and dimensions (pp. 55–68). Oxford: Pergamon.Google Scholar
  8. Bielaczyc, K. (2006). Designing social infrastructure: Critical issues in creating learning environments with technology. Journal of the Learning Sciences, 15(3), 301–329. doi: 10.1207/s15327809jls1503_1.CrossRefGoogle Scholar
  9. Burnard, P. (1991). A method of analysing interview transcripts in qualitative research. Nurse Education Today, 11(6), 461–466. doi: 10.1016/0260-6917(91)90009-Y.CrossRefGoogle Scholar
  10. Cano, F. (2005). Epistemological beliefs and approaches to learning: Their change through secondary school and their influence on academic performance. British Journal of Educational Psychology, 75(2), 203–221. doi: 10.1348/000709904X22683.CrossRefGoogle Scholar
  11. Carey, S., Scholnick, E. K., & Nelson, K. (1999). Sources of conceptual change. In E. K. Scholnick, K. Nelson, F. G. L. Huetwell, S. A. Gelman, & P. H. Miller (Eds.), Conceptual development: Piaget’s legacy (pp. 293–326). Mahwah, New Jersey: Lawrence Erlbaum.Google Scholar
  12. Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235–251. doi: 1010.1207/s15326985ep2803_4.CrossRefGoogle Scholar
  13. Caswell, B., & Bielaczyc, K. (2002). Knowledge Forum: Altering the relationship between students and scientific knowledge. Education, Communication & Information, 1(3), 281–305. doi: 10.1080/146363102753535240.CrossRefGoogle Scholar
  14. Chan, C. K. K., Burtis, P. J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, 15(1), 1–40. doi: 10.1207/s1532690xci1501_1.CrossRefGoogle Scholar
  15. Chen, B., Chuy, M., Resendes, M., Scardamalia, M., & Bereiter, C. (2011). Evaluation by grade 5 and 6 students of the promisingness of ideas in knowledge-building discourse. In H. Spada, G. Stahl, N. Miyake, & N. Law (Eds.), Connecting computer-supported collaborative learning to policy and practice: CSCL2011 conference proceedings. Volume II—Short papers and posters (pp. 571–575). Hong Kong: International Society of the Learning Sciences.Google Scholar
  16. Chen, B., & Hong, H.-Y. (2016). Schools as knowledge-building organizations: Thirty years of design research. Educational Psychologist, 51(2), 266–288. doi: 10.1080/00461520.2016.1175306.CrossRefGoogle Scholar
  17. Chen, B., Scardamalia, M., & Bereiter, C. (2015). Advancing knowledge building discourse through judgments of promising ideas. International Journal of Computer-Supported Collaborative Learning, 10(4), 345–366. doi: 10.1007/s11412-015-9225-z.CrossRefGoogle Scholar
  18. Chi, M. T. H., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27–43. doi: 10.1016/0959-4752(94)90017-5.CrossRefGoogle Scholar
  19. Chinn, C. A., Buckland, L. A., & Samarapungavan, A. (2011). Expanding the dimensions of epistemic cognition: Arguments from philosophy and psychology. Educational Psychologist, 46(3), 141–167. doi: 10.1080/00461520.2011.587722.CrossRefGoogle Scholar
  20. Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218. doi: 10.1002/sce.10001.CrossRefGoogle Scholar
  21. Chuy, M., Scardamalia, M., Bereiter, C., Prinsen, F., Resendes, M., Messina, R., et al. (2010). Understanding the nature of science and scientific progress: A theory-building approach. Canadian Journal of Learning and Technology/La Revue canadienne de l’apprentissage et de la technologie, 36(1), 1–21.Google Scholar
  22. Chuy, M., Zhang, J., Resendes, M., Scardamalia, M., & Bereiter, C. (2011). Does contributing to a knowledge building dialogue lead to individual advancement of knowledge? In H. Spada, G. Stahl, N. Miyake, & N. Law (Eds.), Connecting computer-supported collaborative learning to policy and practice: CSCL2011 conference proceedings. Volume I—Long papers (pp. 57–63). International Society of the Learning Sciences.Google Scholar
  23. Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. Journal of the Learning Sciences, 13(1), 15–42. doi: 10.1207/s15327809jls1301_2.CrossRefGoogle Scholar
  24. Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29(2), 186–204. doi: 10.1016/j.cedpsych.2004.01.004.CrossRefGoogle Scholar
  25. Dillon, J. T. (1982). Problem finding and solving. The Journal of Creative Behavior, 16(2), 97–111. doi: 10.1002/j.2162-6057.1982.tb00326.x.CrossRefGoogle Scholar
  26. DiSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. Pufall (Eds.), Constructivism in the computer age (pp. 49–70). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  27. Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688. doi: 10.1080/09500690305016.CrossRefGoogle Scholar
  28. Edelson, D. C. (2002). Design research: What we learn when we engage in design. Journal of the Learning Sciences, 11(1), 105–121. doi: 10.1207/S15327809JLS1101_4.CrossRefGoogle Scholar
  29. Gardner, H. (1994). More on private intuitions and public symbol systems. Creativity Research Journal, 7(3–4), 265–275. doi: 10.1080/10400419409534534.CrossRefGoogle Scholar
  30. Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140. doi: 10.3102/00346543067001088.CrossRefGoogle Scholar
  31. Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319–337. doi: 10.1002/sce.3730770306.CrossRefGoogle Scholar
  32. Laferriere, T., Law, N., & Montané, M. (2012). An international knowledge building network for sustainable curriculum and pedagogical innovation. International Education Studies, 5(3), 148–160. doi: 10.5539/ies.v5n3p148.CrossRefGoogle Scholar
  33. Lam, I. C. K., & Chan, C. K. K. (2008). Fostering epistemological beliefs and conceptual change in chemistry using knowledge building. Proceedings of the 8th international conference on international conference for the learning sciences (Vol. 1, pp. 461–468). Utrecht, The Netherlands: International Society of the Learning Sciences.Google Scholar
  34. Lee, V. Y. A., Tan, S. C., & Chee, J. K. K. (2016). Idea Identification and Analysis (I2A): A search for sustainable promising ideas within knowledge-building discourse. In C. K. Looi, J. L. Polman, U. Cress, & P. Reimann (Eds.), Transforming learning, empowering learners: The international conference of the learning sciences (ICLS) (Vol. 1, pp. 88–97). Singapore: The International Society of the Learning Sciences.Google Scholar
  35. Linn, M. C. (2008). Teaching for conceptual change: Distinguish or extinguish ideas. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 694–722). New York, NY: Routledge.Google Scholar
  36. Mason, L., & Gava, M. (2007). Effects of epistemological beliefs and learning text structure on conceptual change. In S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds.), Reframing the conceptual change approach in learning and instruction (pp. 165–196). New York, NY, USA: Elsevier Science.Google Scholar
  37. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.Google Scholar
  38. Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463–466. doi: 10.1126/science.1183944.CrossRefGoogle Scholar
  39. Özdemir, G., & Clark, D. (2007). An overview of conceptual change theories. Eurasia Journal of Mathematics, Science & Technology Education, 3(4), 351–361.Google Scholar
  40. Perry, W. G. (1970). Forms of intellectual and ethical development in the college years. New York: Academic Press.Google Scholar
  41. Phillips, D. C. (2014). Research in the hard sciences, and in very hard “softer” domains. Educational Researcher, 43(1), 9–11. doi: 10.3102/0013189X13520293.CrossRefGoogle Scholar
  42. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. doi: 10.1002/sce.3730660207.CrossRefGoogle Scholar
  43. Promisingness. (n.d.). Oxford Dictionaries. Retrieved from
  44. Rosé, C. P., Wang, Y.-C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., et al. (2008). Analyzing collaborative learning processes automatically: Exploiting the advances of computational linguistics in computer-supported collaborative learning. International Journal of Computer-Supported Collaborative Learning, 3(3), 237–271. doi: 10.1007/s11412-007-9034-0.CrossRefGoogle Scholar
  45. Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith (Ed.), Liberal education in a knowledge society (pp. 67–98). Chicago, IL: Open Court.Google Scholar
  46. Scardamalia, M. (2004). CSILE/Knowledge Forum. In A. Kovalchick & K. Dawson (Eds.), Education and technology: An encyclopedia (pp. 183–192). Santa Barbara, CA: ABC-CLIO.Google Scholar
  47. Scardamalia, M., & Bereiter, C. (1991). Higher levels of agency for children in knowledge building: A challenge for the design of new knowledge media. Journal of the Learning Sciences, 1(1), 37–68. doi: 10.1207/s15327809jls0101_3.CrossRefGoogle Scholar
  48. Scardamalia, M., & Bereiter, C. (2003). Knowledge Building. In J. W. Guthrie (Ed.), Encyclopedia of education (2nd ed., Vol. 17, pp. 1370–1373). New York, NY: Macmillan Reference.Google Scholar
  49. Scardamalia, M., & Bereiter, C. (2007). Fostering communities of learners and knowledge building: An interrupted dialogue. In J. C. Campione, K. E. Metz, & A. S. Palinscar (Eds.), Children’s learning in the laboratory and in the classroom: Essays in honor of Ann Brown (pp. 197–212). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  50. Scardamalia, M., & Bereiter, C. (2014). Knowledge building and knowledge creation: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (2nd ed., pp. 397–417). New York, New York, USA: Cambridge University Press.CrossRefGoogle Scholar
  51. Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82(3), 498–504. doi: 10.1037/0022-0663.82.3.498.CrossRefGoogle Scholar
  52. Stathopoulou, C., & Vosniadou, S. (2007). Exploring the relationship between physics-related epistemological beliefs and physics understanding. Contemporary Educational Psychology, 32(3), 255–281. doi: 10.1016/j.cedpsych.2005.12.002.CrossRefGoogle Scholar
  53. Treffinger, D. J. (1995). Creative Problem Solving: Overview and educational implications. Educational Psychology Review, 7(3), 301–312. doi: 10.1007/BF02213375.CrossRefGoogle Scholar
  54. van Aalst, J. (2009). Distinguishing knowledge-sharing, knowledge-construction, and knowledge-creation discourses. International Journal of Computer-Supported Collaborative Learning, 4(3), 259–287. doi: 10.1007/s11412-009-9069-5.CrossRefGoogle Scholar
  55. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535–585. doi: 10.1016/0010-0285(92)90018-W.CrossRefGoogle Scholar
  56. Vosniadou, S., & Kollias, V. (2003). Using collaborative, computer-supported, model building to promote conceptual change in science. In E. D. Corte (Ed.), Powerful learning environments: Unravelling basic components and dimensions (pp. 181–196). Pergamon: Emerald Group Publishing.Google Scholar
  57. Zhang, J., Scardamalia, M., Lamon, M., Messina, R., & Reeve, R. (2007). Socio-cognitive dynamics of knowledge building in the work of 9- and 10-year-olds. Educational Technology Research and Development, 55(2), 117–145. doi: 10.1007/s11423-006-9019-0.CrossRefGoogle Scholar

Copyright information

© Association for Educational Communications and Technology 2016

Authors and Affiliations

  1. 1.Ontario Institute for Studies in EducationUniversity of TorontoTorontoCanada
  2. 2.Department of Curriculum and Instruction, College of Education and Human DevelopmentUniversity of Minnesota-Twin CitiesMinneapolisUSA

Personalised recommendations