The adoption of mark-up tools in an interactive e-textbook reader

  • Sam Van HorneEmail author
  • Jae-eun Russell
  • Kathy L. Schuh
Research Article


Researchers have more often examined whether students prefer using an e-textbook over a paper textbook or whether e-textbooks provide a better resource for learning than paper textbooks, but students’ adoption of mark-up tools has remained relatively unexamined. Drawing on the concept of Innovation Diffusion Theory, we used educational data mining techniques and survival analysis to examine time to adoption of highlights, notes, annotations, bookmarks, and questions in an interactive e-textbook reader. We found that the only tool that more than half of the participants used was highlighting. Students who purchased a printed copy of the textbook had longer average times to using notes and annotations. Because most of the more interactive tools were used by a relatively small number of students, regression modeling of the factors associated with tool usage was difficult. However, there was evidence that the likelihood of using the tools decreased as the semester progressed, and that students’ self-reported reading behaviors and grade point average were predictive of the time to using the mark-up tools. An interaction between bookmark usage and amount of reading was positively associated with course grades, suggesting that a strategy of bookmarking with frequent reading could assist students to learn content successfully. The implications of this research are that (1) instructors may need to more directly scaffold the adoption of interactive e-textbook tools that are touted as boosts to student learning and (2) promoting adoption early, shortly after students begin reading the e-textbook, is critical for students to acclimate to using the tool.


Interactive E-textbook Technology adoption Survival analysis Diffusion theory 



The authors would like to acknowledge the Consortium of College and University Media Centers, who awarded the authors a research grant that funded some of the expenses related to this research study.


  1. Abdullah, N., & Gibb, F. (2008a). Students’ attitudes towards e-books in a Scottish higher education institute: part 1. Library Review, 57(8), 593–605.CrossRefGoogle Scholar
  2. Abdullah, N., & Gibb, F. (2008b). Students’ attitudes towards e-books in a Scottish higher education institute: Part 2: analysis of e-book usage. Library Review, 57(9), 676–689.CrossRefGoogle Scholar
  3. Ackerman, R., & Goldsmith, M. (2011). Metacognitive regulation of text learning: On screen versus on paper. Journal of Experimental Psychology, 17(1), 18–32. doi: 10.1037/a0022086.Google Scholar
  4. Allison, P. D., & Institute, S. A. S. (2012). Survival analysis using SAS: A practical guide. Cary: SAS Institute.Google Scholar
  5. Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40(4), 199–209. doi: 10.1207/s15326985ep4004_2.CrossRefGoogle Scholar
  6. Azevedo, R., & Hadwin, A. F. (2005). Scaffolding self-regulated learning and metacognition—Implications for the design of computer-based scaffolds. Instructional Science, 33(5), 367–379. doi: 10.1007/s11251-005-1272-9.CrossRefGoogle Scholar
  7. Bahr, P. R. (2009). Educational attainment as process: Using hierarchical discrete-time event history analysis to model rate of progress. Research in Higher Education, 50(7), 691–714. doi: 10.1007/s11162-009-9135-x.CrossRefGoogle Scholar
  8. Bannert, M., Hildebrand, M., & Mengelkamp, C. (2008). Effects of a metacognitive support device in learning environments. Computers in Human Behavior, 25(4), 829–835. doi: 10.1016/j.chb.2008.07.002.CrossRefGoogle Scholar
  9. Berg, S. A., Hoffmann, K., & Dawson, D. (2010). Not on the same page: Undergraduates’ information retrieval in electronic and print books. The Journal of Academic Librarianship, 36(6), 518–525. doi: 10.1016/j.acalib.2010.08.008.CrossRefGoogle Scholar
  10. Brunet, D. P., Bates, M. L., Gallo, J. R., & Strother, E. A. (2011). Incoming dental students’ expectations and acceptance of an electronic textbook program. Journal of Dental Education, 75(5), 646–652.Google Scholar
  11. Buchanan, T., Sainter, P., & Saunders, G. (2013). Factors affecting faculty use of learning technologies: implications for models of technology adoption. Journal of Computing in Higher Education, 25(1), 1–11. doi: 10.1007/s12528-013-9066-6.CrossRefGoogle Scholar
  12. Cassidy, E. D., Martinez, M., & Shen, L. (2012). Not in love, or not in the know? Graduate student and faculty use (and non-use) of e-books. The Journal of Academic Librarianship, 38(6), 326–332. doi: 10.1016/j.acalib.2012.08.005.CrossRefGoogle Scholar
  13. Caverly, D. C., Orlando, V. P., & Mullen, J. L. (2000). Textbook study reading. In R. F. Filippo & D. C. Caverly (Eds.), Handbook of college reading and study strategy research (pp. 105–147). Mahwah: Lawrence Erlbaum Associates Publishers.Google Scholar
  14. Cuillier, C. A., & Dewland, J. C. (2014). Understanding the key factors for E-textbook integration into a business course: A case study. Journal of Business & Finance Librarianship, 19(1), 32–60. doi: 10.1080/08963568.2013.824338.CrossRefGoogle Scholar
  15. Dabbagh, N., & Kitsantas, A. (2005). Using web-based pedagogical tools as scaffolds for self-regulated learning. Instructional Science, 33(5–6), 513–540. doi: 10.1007/s11251-005-1278-3.CrossRefGoogle Scholar
  16. Daniel, D. B., & Woody, W. D. (2013). E-textbooks at what cost? Performance and use of electronic v. print texts. Computers & Education62, 18–23. doi: 10.1016/j.compedu.2012.10.016.CrossRefGoogle Scholar
  17. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, 319–340. doi: 10.2307/249008.CrossRefGoogle Scholar
  18. Davis, F. D. (1993). User acceptance of information technology: System characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475–487. doi: 10.1006/imms.1993.1022.CrossRefGoogle Scholar
  19. Dillon, A., McKnight, C., & Richardson, J. (1988). Reading from paper versus reading from screen. The Computer Journal, 31(5), 457–464.CrossRefGoogle Scholar
  20. Fouh, E., Breakiron, D. A., Hamouda, S., Farghally, M. F., & Shaffer, C. A. (2014). Exploring students learning behavior with an interactive etextbook in computer science courses. Computers in Human Behavior, 41, 478–485. doi: 10.1016/j.chb.2014.09.061.CrossRefGoogle Scholar
  21. Hardgrave, B. C., Davis, F. D., & Riemenschneider, C. K. (2003). Investigating determinants of software developers’ intentions to follow methodologies. Journal of Management Information Systems, 20(1), 123–151. doi: 10.1080/07421222.2003.11045751.Google Scholar
  22. Hargittai, E. (2010). Digital na (t) ives? Variation in internet skills and uses among members of the “net generation”. Sociological Inquiry, 80(1), 92–113. doi: 10.1111/j.1475-682X.2009.00317.x.CrossRefGoogle Scholar
  23. Helsper, E. J., & Eynon, R. (2010). Digital natives: where is the evidence? British Educational Research Journal, 36(3), 503–520. doi: 10.1080/01411920902989227.CrossRefGoogle Scholar
  24. Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 48(8), 952–984. doi: 10.1002/tea.20439.CrossRefGoogle Scholar
  25. Henderson, C., Finkelstein, N., & Beach, A. (2010). Beyond dissemination in college science teaching: An introduction to four core change strategies. Journal of College Science Teaching, 39(5), 18–25.Google Scholar
  26. Hernon, P., Hopper, R., Leach, M. R., Saunders, L. L., & Zhang, J. (2007). E-book use by students: Undergraduates in economics, literature, and nursing. The Journal of Academic Librarianship, 33(1), 3–13. doi: 10.1016/j.acalib.2006.08.005.CrossRefGoogle Scholar
  27. Hora, M., & Holden, J. (2013). Exploring the role of instructional technology in course planning and classroom teaching: Implications for pedagogical reform. Journal of Computing in Higher Education, 25(2), 68–92. doi: 10.1007/s12528-013-9068-4.CrossRefGoogle Scholar
  28. Hosmer, D. W., Lemeshow, S., & May, S. (1999). Applied survival analysis. Regression modeling of time-to-event data. New York: Wiley.Google Scholar
  29. Hyman, J. A., Moser, M. T., & Segala, L. N. (2014). Electronic reading and digital library technologies: Understanding learner expectation and usage intent for mobile learning. Educational Technology Research and Development,. doi: 10.1007/s11423-013-9330-5.Google Scholar
  30. Ishitani, T. (2006). Studying attrition and degree completion behavior among first-generation college students in the United States. Journal of Higher Education, 77(5), 861–885.
  31. Ishitani, T. (2008). How to explore timing of intervention for students at risk of departure. New Directions for Institutional Research., 2008(137), 105–122. doi: 10.1002/ir.241.CrossRefGoogle Scholar
  32. Jairam, D., & Kiewra, K. A. (2010). Helping students soar to success on computers: An investigation of the SOAR study method for computer-based learning. Journal of Educational Psychology, 102(3), 601–614. doi: 10.1037/a0019137.CrossRefGoogle Scholar
  33. Januszewski, A., Molenda, M., & Association for Educational Communications and Technology. (2008). Educational technology: A definition with commentary. New York: Lawrence Erlbaum Associates.Google Scholar
  34. Jao, C. S., Brint, S. U., & Hier, D. B. (2005). Making the neurology clerkship more effective: Can e-textbook facilitate learning? Neurological Research27(7), 762–767. doi: 10.1179/016164105X35639.CrossRefGoogle Scholar
  35. Ji, S. W., Michaels, S., & Waterman, D. (2014). Print vs. electronic readings in college courses: Cost-efficiency and perceived learning. The Internet and Higher Education, 21, 17–24. doi: 10.1016/j.iheduc.2013.10.004.CrossRefGoogle Scholar
  36. Kauffman, D. F., Zhao, R., & Yang, Y. S. (2011). Effects of online note taking formats and self-monitoring prompts on learning from online text: Using technology to enhance self-regulated learning. Contemporary Educational Psychology, 36(4), 313–322. doi: 10.1016/j.cedpsych.2011.04.001.CrossRefGoogle Scholar
  37. Kelly, S. (2010). An event history analysis of teacher attrition: Salary, teacher tracking, and socially disadvantaged schools. The Journal of Experimental Education, 72(3), 195–220.CrossRefGoogle Scholar
  38. Kiewra, K. A. (1989). A review of note-taking: The encoding-storage paradigm and beyond. Educational Psychology Review, 1, 147–172. doi: 10.1007/BF01326640.CrossRefGoogle Scholar
  39. Kim, M., Yoo, K., Park, C., & Yoo, J. (2010). Development of a digital textbook standard format based on XML. Advances in Computer Science and Information Technology, 6059, 363–377. doi: 10.1007/978-3-642-13577-4_32.CrossRefGoogle Scholar
  40. Kirschner, P. A., & van Merriënboer, J. J. (2013). Do learners really know best? Urban legends in education. Educational Psychologist, 48(3), 169–183. doi: 10.1080/00461520.2013.804395.CrossRefGoogle Scholar
  41. Kissinger, J. (2013). The social & mobile learning experiences of students using mobile e-books. Journal of Asynchronous Learning Networks, 17(1), 155–170.Google Scholar
  42. Kozma, R. B. (1991). Learning with media. Review of educational research, 61(2), 179–211. doi: 10.3102/00346543061002179.CrossRefGoogle Scholar
  43. Li, L., Chen, G., & Yang, S. (2013). Construction of cognitive maps to improve e-book reading and navigation. Computers & Education, 60(1), 32–39. doi: 10.1016/j.compedu.2012.07.010.CrossRefGoogle Scholar
  44. Liang, T. H. (2015). The effects of keyword cues and 3R strategy on children’s e-book reading. Journal of Computer Assisted learning, 31(2), 176–187. doi: 10.1111/jcal.12072.CrossRefGoogle Scholar
  45. Lund, T. J., & Stains, M. (2015). The importance of context: an exploration of factors influencing the adoption of student-centered teaching among chemistry, biology, and physics faculty. International Journal of STEM Education, 2(1), 1–21. doi: 10.1186/s40594-015-0026-8.CrossRefGoogle Scholar
  46. Mangen, A., Walgermo, B. R., & Brønnick, K. (2013). Reading linear texts on paper versus computer screen: effects on reading comprehension. International Journal of Educational Research, 58, 61–68. doi: 10.1016/j.ijer.2012.12.002.CrossRefGoogle Scholar
  47. Merriam, S. B. (1998). Qualitative research and case study applications in education. San Francisco: Jossey-Bass.Google Scholar
  48. Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. The Teachers College Record, 108(6), 1017–1054.CrossRefGoogle Scholar
  49. Mizrachi, D. (2015). Undergraduates’ academic reading format preferences and behaviors. The Journal of Academic Librarianship, 41(3), 301–311. doi: 10.1016/j.acalib.2015.03.009.CrossRefGoogle Scholar
  50. Morrison, G. R., Ross, S. M., Kalman, H. K., & Kemp, J. E. (2013). Designing effective instruction. Hoboken: Wiley.Google Scholar
  51. Noyes, J., & Garland, K. (2005). Students’ attitudes toward books and computers. Computers in Human Behavior, 21(2), 233–241. doi: 10.1016/j.chb.2004.02.016.CrossRefGoogle Scholar
  52. Noyes, J., & Garland, K. (2006). Explaining students’ attitudes toward books and computers. Computers in Human Behavior, 22(3), 351–363. doi: 10.1016/j.chb.2004.09.004.CrossRefGoogle Scholar
  53. Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated learning. International journal of educational research, 31(6), 459–470. doi: 10.1016/S0883-0355(99)00015-4.CrossRefGoogle Scholar
  54. Pintrich, P. R. & Zusho, A. (2002). The development of academic self-regulation: The role of cognitive and motivational factors. In A. Wigfield & J. Eccles (Eds.) Development of Achievement Motivation (pp. 249–284). San Diego: Academic Press. doi: 10.1016/B978-012750053-9/50012-7
  55. Ponce, H. R., López, M. J., & Mayer, R. E. (2012). Instructional effectiveness of a computer-supported program for teaching reading comprehension strategies. Computers & Education, 59(4), 1170–1183. doi: 10.1016/j.compedu.2012.05.013.CrossRefGoogle Scholar
  56. Rockinson-Szapkiw, A. J., Courduff, J., Carter, K., & Bennett, D. (2013a). Electronic versus traditional print textbooks: A comparison study on the influence of university students’ learning. Computers & Education, 63, 259–266. doi: 10.1016/j.compedu.2012.11.022.CrossRefGoogle Scholar
  57. Rockinson-Szapkiw, A. J., Wendt, J., & Lunde, R. (2013b). Electronic versus print textbooks: the influence of textbook format on university students’ self-regulated learning strategies, motivation, and text anxiety. American Journal of Distance Education, 27(3), 179–188. doi: 10.1080/08923647.2013.796230.CrossRefGoogle Scholar
  58. Rogers, E. M. (1995). Diffusion of innovations. New York: Free Press.Google Scholar
  59. Salmerόn, L., & García, V. (2011). Reading skills and children’s navigation strategies in hypertext. Computers in Human Behavior, 27(3), 1143–1151. doi: 10.1016/j.chb.2010.12.008.CrossRefGoogle Scholar
  60. Scales, A., & Rhee, O. (2001). Adult reading habits and patterns. Reading Psychology, 22(3), 175–203. doi: 10.1080/027027101753170610.CrossRefGoogle Scholar
  61. Schmid, R. F., Bernard, R., Borokhovski, E., Tamim, R., Abrami, P., Wade, C. A., et al. (2009). Technology’s effect on achievement in higher education: a stage I meta-analysis of classroom applications. Journal of Computing in Higher Education, 21(2), 95–109. doi: 10.1007/s12528-009-9021-8.CrossRefGoogle Scholar
  62. Shepperd, J. A., Grace, J. L., & Koch, E. J. (2008). Evaluating the electronic textbook: Is it time to dispense with the paper text? Teaching of Psychology, 35(1), 2–5. doi: 10.1080/00986280701818532.CrossRefGoogle Scholar
  63. Soifer, R., Irwin, M. E., Crumrine, B. M., Honzaki, E., Simmons, B. K., & Young, D. L. (1990). The complete theory-to-practice handbook of adult literacy: Curriculum design and teaching approaches. New York: Teachers College Press.Google Scholar
  64. Stone, R. W., & Baker-Eveleth, L. J. (2013). Students’ intentions to purchase electronic textbooks. Journal of Computing in Higher Education, 25(1), 27–47. doi: 10.1016/j.chb.2012.12.007.CrossRefGoogle Scholar
  65. Sullivan, S. A., & Puntambekar, S. (2015). Learning with digital texts: exploring the impact of prior domain knowledge and reading comprehension ability on navigation and learning outcomes. Computers in Human Behavior, 50, 299–313. doi: 10.1016/j.chb.2015.04.016.CrossRefGoogle Scholar
  66. Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning a second-order meta-analysis and validation study. Review of Educational Research, 81(1), 4–28. doi: 10.3102/0034654310393361.CrossRefGoogle Scholar
  67. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  68. Terpend, R., Gattiker, T. F., & Lowe, S. E. (2014). Electronic textbooks: Antecedents of students’ adoption and learning outcomes. Decision Sciences Journal of Innovative Education12(2), 149–173. doi: 10.1111/dsji.12031.CrossRefGoogle Scholar
  69. Van Horne, S., Schuh, K. L., & Russell, J. E. (in progress). College students’ and instructors’ usage of interactive e-textbooks.Google Scholar
  70. Wang, S. K., Hsu, H. Y., Campbell, T., Coster, D. C., & Longhurst, M. (2014). An investigation of middle school science teachers and students use of technology inside and outside of classrooms: considering whether digital natives are more technology savvy than their teachers. Educational Technology Research and Development, 62(5), 637–662. doi: 10.1007/s11423-014-9355-4.CrossRefGoogle Scholar
  71. Winne, P. H. (2010). Improving measurements of self-regulated learning. Educational Psychologist, 45(4), 267–276. doi: 10.1080/00461520.2010.517150.CrossRefGoogle Scholar
  72. Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. Metacognition in educational theory and practice, 93, 27–30.Google Scholar
  73. Woody, W. D., Daniel, D. B., & Baker, C. A. (2010). E-books or textbooks: students prefer textbooks. Computers & Education, 55(3), 945–948. doi: 10.1016/j.compedu.2010.04.005.CrossRefGoogle Scholar
  74. Worm, B. S. (2013). Learning from simple ebooks, online cases or classroom teaching when acquiring complex knowledge. A randomized controlled trial in respiratory physiology and pulmonology. PLoS ONE, 8(9), e73336. doi: 10.1371/journal.pone.0073336.CrossRefGoogle Scholar

Copyright information

© Association for Educational Communications and Technology 2016

Authors and Affiliations

  • Sam Van Horne
    • 1
    Email author
  • Jae-eun Russell
    • 1
  • Kathy L. Schuh
    • 1
  1. 1.The Office of Teaching, Learning, and TechnologyThe University of IowaIowa CityUSA

Personalised recommendations