Skip to main content

Communicating through body: a situated embodiment-based strategy with flag semaphore for procedural knowledge construction

Abstract

Situated learning suggests that knowledge is grounded in and influenced by the learning context, the activity, and the culture. Thus, learning in such situated learning contexts can improve learners’ learning performance. Based on embodied cognition and situated learning, this study proposes a situated embodiment-based strategy to help learners learn flag semaphore through real signaling practices with their body movements in a richly perceived learning context. With the support of natural user interface technologies and educational robots, the situated embodiment-based strategy provides a realistic learning context via learners’ body movements to help learners easily construct procedural knowledge. In order to evaluate the effects of the situated embodiment-based strategy, a flag semaphore learning activity was designed and a quasi-experiment was conducted with 60 participants. Three variables were assessed, namely practical signaling performance, attention, and cognitive load. The results showed that the situated embodiment-based learning group had significantly higher practical signaling performance and attention, and significantly lower extrinsic cognitive load than the embodiment-based learning group. The findings suggest that the situated embodiment-based learning strategy is an effective design that can improve the procedural knowledge construction and enhance the attention level with the lower extrinsic cognitive load in a learning process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly, 25(1), 107–136. doi:10.2307/3250961.

    Article  Google Scholar 

  • Alibali, M. W., & Nathan, M. J. (2011). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 247–286. doi:10.1080/10508406.2011.611446.

    Article  Google Scholar 

  • Amadieu, F., Mariné, C., & Laimay, C. (2011). The attention-guiding effect and cognitive load in the comprehension of animations. Computers in Human Behavior, 27(1), 36–40. doi:10.1016/j.chb.2010.05.009.

    Article  Google Scholar 

  • Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(4), 637–660. doi:10.1017/S0140525X99532147.

    Article  Google Scholar 

  • Barsalou, L. W. (2008). Grounded Cognition. Annual Review of Psychology, 59(1), 617–645. doi:10.1146/annurev.psych.59.103006.093639.

    Article  Google Scholar 

  • Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4), 716–724. doi:10.1111/j.1756-8765.2010.01115.x.

    Article  Google Scholar 

  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42. doi:10.3102/0013189x018001032.

    Article  Google Scholar 

  • Chang, C.-Y., Chien, Y.-T., Chiang, C.-Y., Lin, M.-C., & Lai, H.-C. (2013). Embodying gesture-based multimedia to improve learning. British Journal of Educational Technology, 44(1), E5–E9. doi:10.1111/j.1467-8535.2012.01311.x.

    Article  Google Scholar 

  • Chang, C.-W., Lee, J.-H., Wang, C.-Y., & Chen, G.-D. (2010). Improving the authentic learning experience by integrating robots into the mixed-reality environment. Computers & Education, 55(4), 1572–1578. doi:10.1016/j.compedu.2010.06.023.

    Article  Google Scholar 

  • Chao, K.-J., Huang, H.-W., Fang, W.-C., & Chen, N.-S. (2013). Embodied play to learn: Exploring Kinect-facilitated memory performance. British Journal of Educational Technology, 44(5), E151–E155. doi:10.1111/bjet.12018.

    Article  Google Scholar 

  • Chen, N.-S., & Fang, W.-C. (2014). Gesture-Based technologies for enhancing learning. In R. Huang, Kinshuk & N.-S. Chen (Eds.), The New Development of Technology Enhanced Learning (pp. 95–112). Berlin: Springer. doi: 10.1007/978-3-642-38291-8_6.

  • Chuang, C.-P., Jou, M., Lin, Y.-T., & Lu, C.-T. (2013). Development of a situated spectrum analyzer learning platform for enhancing student technical skills. Interactive Learning Environments, 1–12. doi: 10.1080/10494820.2013.765896.

  • Decety, J., & Grèzes, J. (2006). The power of simulation: Imagining one’s own and other’s behavior. Brain Research, 1079(1), 4–14. doi:10.1016/j.brainres.2005.12.115.

    Article  Google Scholar 

  • Fang, W.-C., Sheu, F.-R., Lin, Y.-L., Lee, Y.-L., & Chen, N.-S. (2015). Interactive physical games: Improving balance in older adults. In M. Chang & Y. Li (Eds.), Smart Learning Environments (pp. 159–174). Berlin: Springer. doi: 10.1007/978-3-662-44447-4_9.

  • Gagne, E. D., Yekovich, C. W., & Yekovich, F. R. (1997). Cognitive psychology of school learning (2nd ed.). Boston: Allyn & Bacon.

    Google Scholar 

  • Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.

    Google Scholar 

  • Goldman, A. I. (2006). Simulating Minds: The Philosophy, Psychology, and Neuroscience of Mindreading. New York: Oxford University Press.

    Book  Google Scholar 

  • Hao, Y., Hong, J.-C., Jong, J.-T., Hwang, M.-Y., Su, C.-Y., & Yang, J.-S. (2010). Non-native Chinese language learners’ attitudes towards online vision-based motion games. British Journal of Educational Technology, 41(6), 1043–1053. doi:10.1111/j.1467-8535.2009.01050.x.

    Article  Google Scholar 

  • Hung, I. C., Chao, K.-J., Lee, L., & Chen, N.-S. (2012). Designing a robot teaching assistant for enhancing and sustaining learning motivation. Interactive Learning Environments, 21(2), 156–171. doi:10.1080/10494820.2012.705855.

    Article  Google Scholar 

  • Hung, I.-C., Lin, L.-I., Fang, W.-C., & Chen, N.-S. (2014). Learning with the body: An embodiment-based learning strategy enhances performance of comprehending fundamental optics. Interacting with Computers, 26(4), 360–371. doi:10.1093/iwc/iwu011.

    Article  Google Scholar 

  • Kuo, F.-R., Hsu, C.-C., Fang, W.-C., & Chen, N.-S. (2014). The effects of Embodiment-based TPR approach on student English vocabulary learning achievement, retention and acceptance. Journal of King Saud UniversityComputer and Information Sciences, 26(1, Supplement), 63–70. doi: 10.1016/j.jksuci.2013.10.003.

  • Landau, M. J., Meier, B. P., & Keefer, L. A. (2010). A metaphor-enriched social cognition. Psychological Bulletin, 136(6), 1045–1067. doi:10.1037/a0020970.

    Article  Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York: Cambridge University Press.

    Book  Google Scholar 

  • Macedonia, M., Müller, K., & Friederici, A. D. (2011). The impact of iconic gestures on foreign language word learning and its neural substrate. Human Brain Mapping, 32(6), 982–998. doi:10.1002/hbm.21084.

    Article  Google Scholar 

  • McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: University of Chicago Press.

    Google Scholar 

  • Niedenthal, P. M., Barsalou, L. W., Winkielman, P., Krauth-Gruber, S., & Ric, F. (2005). Embodiment in attitudes, social perception, and emotion. Personality and Social Psychology Review, 9(3), 184–211. doi:10.1207/s15327957pspr0903_1.

    Article  Google Scholar 

  • Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429–434. doi:10.1037/0022-0663.84.4.429.

    Article  Google Scholar 

  • Sheu, F.-R., & Chen, N.-S. (2014). Taking a signal: A review of gesture-based computing research in education. Computers & Education, 78, 268–277. doi:10.1016/j.compedu.2014.06.008.

    Article  Google Scholar 

  • Sheu, F.-R., Lee, Y.-L., Yang, S.-J., & Chen, N.-S. (2015). User-centered design of interactive gesture-based fitness video game for elderly. In G. Chen, V. Kumar, Kinshuk, R. Huang & S. C. Kong (Eds.), Emerging Issues in Smart Learning (pp. 393–397). Berlin: Springer. doi: 10.1007/978-3-662-44188-6_54.

  • Sweller, J., van Merrienboer, J. G., & Paas, F. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296. doi:10.1023/A:1022193728205.

    Article  Google Scholar 

  • Wang, Y. H., Young, S. S.-C., & Jang, J.-S. R. (2013). Using tangible companions for enhancing learning English conversation. Journal of Educational Technology & Society, 16(2), 296–309.

    Google Scholar 

  • Wechsler, D. (1997). Wechsler Adult Intelligence Scale (3rd ed.). San Antonio: The Psychological Corporation.

    Google Scholar 

  • Young, M. (1993). Instructional design for situated learning. Educational Technology Research and Development, 41(1), 43–58. doi:10.1007/BF02297091.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Ministry of Science and Technology in Taiwan under Project Numbers MOST 103-2511-S-110-002-MY3, NSC 102-2911-I-110-501, and NSC 101-2511-S-110-003-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian-Shing Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hung, IC., Hsu, HH., Chen, NS. et al. Communicating through body: a situated embodiment-based strategy with flag semaphore for procedural knowledge construction. Education Tech Research Dev 63, 749–769 (2015). https://doi.org/10.1007/s11423-015-9386-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-015-9386-5

Keywords

  • Embodiment-based learning
  • Situated learning
  • Procedural knowledge
  • Practical signaling performance
  • Attention
  • Cognitive load