Second language acquisition of Mandarin Chinese vocabulary: context of learning effects

Abstract

In an increasingly multilingual world, it is important to examine methods that may lead to more efficient second language learning, as well as to analyze the mechanisms by which successful learning occurs. The purpose of the current study was to investigate how different learning contexts can impact the learning of Mandarin Chinese as a second language. Two contexts [virtual environment (VE) vs. traditional learning environment] were compared and examined from cognitive and linguistic perspectives. Thirty-one monolingual English speakers participated in a training study consisting of seven learning and testing sessions, followed by one additional sessions of delayed post-testing. The participants’ behavioral performances with regard to accuracy, reaction time, and exposure were collected and analyzed. Through analyses of variance and mixed-effects modeling, the current study shows that the learning trajectory of the participants in the VE showed a larger acceleration than that of those in the traditional learning context, which suggests that simulated embodied experience in the VE may have aided in the processing of a second language, especially with regard to enhancing the learning trajectory in short-term second language training.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    To ensure that the difference between the 2D line drawings and the 3D color pictures did not affect the learning outcome, we recruited a separate group of participants in a picture naming experiment. Thirty-four participants named the 2D line drawings and the 3D color pictures in separated blocks and the order of the blocks were counter-balanced. The corresponding name agreement score was .91 (i.e., 91% of the time the two different types of pictures yielding the same names). The correlation of name agreement score was .83 (i.e., the same picture that has high name agreement in 2D line drawings also has high name agreement in 3D color pictures). There is no significant different on name agreement scores between the two types of pictures; t(178) =.087, p > .05.

References

  1. Abercrombie, S. (2011). Examining the influence of seductive details in case-based instruction on pre-service teachers’ learning and learning performances. Albuquerque, NM: The University of New Mexico.

    Google Scholar 

  2. Aziz-Zadeh, L., & Damasio, A. (2008). Embodied semantics for actions: Findings from functional brain imaging. Journal of Physiology, 102, 35–39.

    Google Scholar 

  3. Baayen, R. H. (2004). Statistics in psycholinguistics: A critique of some current gold standards. Mental Lexicon Working Papers, 1, Edmonton, 1–45.

  4. Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. New York: Cambridge University Press.

    Google Scholar 

  5. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412.

    Article  Google Scholar 

  6. Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4, 829–837.

    Article  Google Scholar 

  7. Barcroft, J. (2004). Second language vocabulary acquisition: A lexical input processing approach. Foreign Language Annals, 37(2), 200–208.

    Article  Google Scholar 

  8. Barr, D. J. (2008). Analyzing ‘visual world’ eyetracking data using multilevel logistic regression. Journal of Memory and Language, 59, 457–474.

    Article  Google Scholar 

  9. Barr, D., Levy, R., Scheepersm, C., & Tily, H. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278.

    Article  Google Scholar 

  10. Barsalou, L. W. (2008). Grounded cognition. The Annual Review of Psychology, 59, 617–645.

    Article  Google Scholar 

  11. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). _lme4: Linear mixed-effects models using Eigen and S4_. R package version 1.1-7. http://CRAN.R-project.org/package=lme4.

  12. Borghi, A. M., Glenberg, A. M., & Kaschak, M. P. (2004). Putting words in perspective. Memory & Cognition, 32(6), 863–873.

    Article  Google Scholar 

  13. Brown, H. D. (2001). Teaching by Principles: An Interactice Approach to Language Pedagogy (2nd ed.). San Fransisco: Longman.

    Google Scholar 

  14. Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulated the activity of the motor system: A combined TMS and behavioral study. Cognitive Bran Research, 24, 355–363.

    Article  Google Scholar 

  15. Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335–359.

    Article  Google Scholar 

  16. Cobb, T. (2007). Computing the vocabulary demands of L2 reading. Language Learning & Technology, 11(3), 38–63.

    Google Scholar 

  17. Cohen, A. D., & Aphek, E. (1980). Retention of second language vocabulary over time: Investigating the role of mnemonic associations. System, 8, 221–235.

    Article  Google Scholar 

  18. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences. Mahwah, NJ: Erlbaum.

    Google Scholar 

  19. Cowart, M. (2005). Embodied cognition. http://www.iep.utm.edu/embodcog/. Accessed 23 April 2014.

  20. Development Core Team, R. (2004). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  21. Dixon, P. (2008). Memory and Language Models of accuracy in repeated-measures designs. Journal of Memory and Language, 59, 447–456.

    Article  Google Scholar 

  22. Fang, S., Legault, J., Lan, Y., & Li, P. (2015). Neural correlates of short-term second language training: Context of learning effects (under review).

  23. Forster, K. I., & Dickinson, R. G. (1976). More on the language-as-fixed-effect fallacy: Monte carlo estimates of error rates for F1, F2, F’, and minF’. Journal of Verbal Learning and Verbal Behavior, 15, 135–142.

    Article  Google Scholar 

  24. Gelman, A., & Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press.

    Google Scholar 

  25. Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9(3), 558–565.

    Article  Google Scholar 

  26. Harp, S. F., & Mayer, R. E. (1997). The role of interest in learning from scientific text and illustrations: On the distinction between emotional and cognitive interest. Journal of Educational Psychology, 89(1), 92–102.

    Article  Google Scholar 

  27. Harp, S. F., & Mayer, R. E. (1998). How seductive details do their damage: A theory of cognitive interest in science learning. Journal of Educational Psychology, 90, 414–434.

    Article  Google Scholar 

  28. Hauk, O., Johnsrude, I., & Pulvermueller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301–307.

    Article  Google Scholar 

  29. Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434–446.

    Article  Google Scholar 

  30. Juffs, A., & Harrington, M. (2011). Aspects of working memory in L2 learning. Language Teaching, 44, 137–166. doi:10.1017/S0261444810000509.

    Article  Google Scholar 

  31. Kern, R. G. (1989). Second language reading strategy instruction: Its effects on comprehension and word inference ability. The Modern Language Journal, 73(2), 135–149.

    Article  Google Scholar 

  32. Krashen, S. D. (1982). Principles and practice in second language acquisition. Prentice-Hall International.

  33. Kroll, J. F., & Curley, J. (1988). Lexical memory in novice bilinguals. The role of concepts in retrieving second language words. In M. Grunenberg, P. Morris, & R. Sykes (Eds.), Practical aspects of memory (2nd ed., pp. 389–395). London: Wiley.

    Google Scholar 

  34. Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2014). lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R packageversion 2.0-11.http://CRAN.R-project.org/package=lmerTest.

  35. Lan, Y. J. (2013). The effect of technology-supported co-sharing on L2 vocabulary strategy development. Educational Technology & Society, 16(4), 1–16.

    Google Scholar 

  36. Lan, Y. J. (2014). Does Second Life improve Mandarin learning by overseas Chinese students? Language Learning & Technology, 18(2), 36–56.

    Google Scholar 

  37. Lan, Y.-J., Kan, Y.-H., Hsiao, I. Y. T., Yang, S. J. H., & Chang, K.-E. (2013). Designing interaction tasks in Second Life for Chinese as a foreign language learners: A preliminary exploration. Australasian Journal of Educational Technology, 29(2), 184–202.

    Google Scholar 

  38. Lan, Y.-J., Kan, Y. H., Sung, Y. T., & Chang, K. E. (2nd revision). Oral-performance language tasks for CSL beginners in Second Life. Language Learning & Technology (under review).

  39. Li, P. (2015). Bilingualism as a dynamic process. In B. MacWhinney & W. O’Grady (Eds.), Handbook of language emergence (pp. 511–536). Hoboken: John Wiley.

    Google Scholar 

  40. Li, P., Zhang, F., Tsai, E., & Puls, B. (2014). Language History Questionnaire (LHQ 2.0): A new dynamic web-based research tool. Bilingualism: Language and Cognition, 17, 673–680.

    Article  Google Scholar 

  41. Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and Instruction, 12, 107–119.

    Article  Google Scholar 

  42. Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43–52.

    Article  Google Scholar 

  43. McCulloch, C. E., & Neuhaus, J. M. (2011). Misspecifying the shape of a random effects distribution: why getting it wrong may not matter. Statistical Science, 26(3), 388–402.

    Article  Google Scholar 

  44. Meara, P. (1982). Vocabulary acquisition: A neglected aspect of language learning. In V. Kinsella (Ed.), Surveys I: Eight state-of-the-art articles on key areas in language teaching (pp. 100–126). Cambridge: Cambridge University Press.

    Google Scholar 

  45. Park, B., Moreno, R., Seufert, T., & Brünken, R. (2011). Does cognitive load moderate the seductive details effect? A multimedia study. Computers in Human Behavior, 27, 5–10.

    Article  Google Scholar 

  46. Peterson, M. (2011). Towards a research agenda for the use of three-dimensional virtual worlds in language learning. CALICO Journal, 29(1), 67–80.

    Article  Google Scholar 

  47. Peterson, M. (2012). Learner participation patterns and strategy use in Second Life: an exploratory case study. ReCALL, 22(3), 273–292.

    Article  Google Scholar 

  48. Posner, M. I., & Snyder, C. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: the Loyola symposium. L. Erlbaum Associates: Hillsdale.

    Google Scholar 

  49. Prince, P. (1996). Second language vocabulary learning: The role of context versus translations as a function of proficiency. The Modern Language Journal, 80(4), 478–493.

    Article  Google Scholar 

  50. Proctor, C. P., Carlo, M., August, D., & Snow, C. (2005). Native Spanish-speaking children reading in English: Toward a model of comprehension. Journal of Educational Psychology, 97(2), 246–256.

    Article  Google Scholar 

  51. Rey, G. D. (2012). A review of research and a meta-analysis of seductive detail effect. Educational Research Review, 7(3), 216–237.

    Article  Google Scholar 

  52. Rueda, Y. T. (2006). Developing pragmatic competence in a foreign language. Colombian Applied Linguistics Journal, 8, 169–182.

    Google Scholar 

  53. Rueschemeyer, S. A., Lindemann, O., van Rooij, D., van Dam, W., & Bekkering, H. (2010). Effects of intentional motor actions on embodied language processing. Experimental Psychology, 57(4), 260–266.

    Article  Google Scholar 

  54. Sanchez, C. A., & Wiley, J. (2006). An examination of the seductive details effect in terms of working memory capacity. Memory & Cognition, 34(2), 344–355.

    Article  Google Scholar 

  55. Schneider, W., Eschman, A., & Zuccolotto, A. (2012). E-Prime User’s Guide. Pittsburgh: Psychology Software Tools Inc.

    Google Scholar 

  56. Snyder, P. J., & Harris, L. J. (1993). Handedness, sex, and familial sinistrality effects on spatial tasks. Cortex, 29(1), 115–134.

    Article  Google Scholar 

  57. Smidt, E., & Hegelheimer, V. (2004). Effects of online academic lectures on ESL listening comprehension, incidental vocabulary acquisition, and strategy use. Computer Assisted Language Learning, 17(5), 517–556.

    Article  Google Scholar 

  58. Snow, M. A. (2005). A model of academic literacy for integrated language and content instruction. In E. Hinkel (Ed.), Handbook of research in second language teaching and learning (pp. 693–712). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  59. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285.

    Article  Google Scholar 

  60. Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4, 295–312.

    Article  Google Scholar 

  61. Sweller, J. (2010). Element interactivity and intrinsic, extraneous and germane cognitive load. Educational Psychology Review, 22, 123–138.

    Article  Google Scholar 

  62. Sweller, J., & Chandler, P. (1994). Why some materials is difficult to learn. Cognition and Instruction, 12(3), 185–233.

    Article  Google Scholar 

  63. Thorne, S. L., Fischer, I., & Lu, X. (2012). The semiotic ecology and linguistic complexity of an online game world. ReCALL, 24(3), 279–301.

    Article  Google Scholar 

  64. Upal, M. A., Gonce, L. O., Tweney, R. D., & Slone, D. J. (2007). Contexualizing counterintuitiveness: How context affects comprehension and memorability of counterintuitive concepts. Cognitive Science, 31, 415–439.

    Article  Google Scholar 

  65. Van Selst, M., & Jolicœur, P. (1994). A solution to the effect of sam-ple size on outlier elimination. Quarterly Journal of Experimental Psychology, 47A(3), 631–650.

    Article  Google Scholar 

  66. Wechsler, D. (1997). WAIS-III administration and scoring manual. San Antonio, TX: Psychological Corporation.

    Google Scholar 

  67. Willems, R. M., & Casasanto, D. (2011). Flexibility in embodied language understanding. Frontiers in Psychology, 2, 116.

    Google Scholar 

  68. Yang, J., & Li, P. (2012). Brain networks of explicit and implicit learning. PLoS ONE, 7, e42993. doi:10.1371/journal.pone.0042993.

    Article  Google Scholar 

  69. Zwaan, R. A., Stanfield, R. A., & Yaxley, R. H. (2002). Language comprehenders mentally represent the shapes of objects. Psychological Science, 13, 168–171.

    Article  Google Scholar 

Download references

Acknowledgments

We would like thank Yu-Ting Hsiao, Yu-Hsuan Kan, Indy Majere, and Luis Tzeng for their assistance with constructing the VEs in Second Life, and Karishma Kodia, Sarah Newby, Evan Oliver, Shinmin Wang for their assistance with running the experiment. The research was supported by funds from the Aim for Top University Office of the National Taiwan Normal University, the Joint Advanced Center for the Study of Learning Sciences (MOST 104-2911-I-003-301), and the US National Science Foundation (BCS-1338946).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Appendix

Appendix

Chinese word English translation
Kitchen
掃把 (saoba)a Broom
手套 (shoutao) Mitten
蠟燭 (lazhu) Candle
剪刀 (jiandao) Scissor
鏟子 (chanzi) Spatula
抽屜 (chouti) Drawer
鍋蓋 (guogai) Lid
鉗子 (qianzi) Tong
漏斗 (loudou) Funnel
濾網 (luwang) Strainer
餐桌 (canzhuo) Table
椅子 (yizi) Chair
烤箱 (kaoxiang) Oven
凳子 (dengzi) Stool
水槽 (shuicao) Sink
蒸鍋 (zhengguo) Steamer
鋼杯 (gangbei) Steel cup
電爐 (dianlu) Stove
花瓶 (huaping) Vase
電話 (dianhua) Telephone
時鐘 (shizhong) Clock
盤子 (panzi) Plate
燉鍋 (dunguo) Stewpot
湯勺 (tangshao) Ladle
飯碗 (fanwan) Bowl
茶杯 (chabei) Teacup
罐子 (guanzi) Jar
酒杯 (jiubei) Wineglass
茶壺 (chahu) Teapot
刀子 (daozi) Knife
Supermarket
芹菜 (qincai) Celery
櫻桃 (yingtao) Cherry
南瓜 (nangua) Pumpkin
鳳梨 (fengli) Pineapple
洋蔥 (yangcong) Onion
奶油 (naiyou) Butter
番茄 (fanqie) Tomato
糖果 (tangguo) Candy
蘿蔔 (luobo) Carrot
花生 (huasheng) Peanut
蘋果 (pingguo) Apple
香蕉 (xiangjiao) Banana
草莓 (caomei) Strawberry
葡萄 (putao) Grape
西瓜 (xigua) Watermelon
白菜 (baicai) Cabbage
豬肉 (zhurou) Pork
黃瓜 (huanggua) Cucumber
茄子 (qiezi) Eggplant
蘑菇 (mogu) Mushroom
玉米 (yumi) Corn
辣椒 (lajiao) Chili
包子 (baozi) Bun
水餃 (shuijiao) Dumpling
面包 (mianbao) Bread
麵條 (miantiao) Noodle
牛奶 (niunai) Milk
雞蛋 (jidan) Egg
餅乾 (bingqian) Cookie
蛋糕 (dangao) Cake
Zoo
火雞 (huoji) Turkey
駱駝 (luotuo) Camel
蜥蜴 (xiyi) Lizard
孔雀 (kongque) Peacock
黃牛 (huangniu) Cow
鸚鵡 (yingwu) Parrot
鴕鳥 (tuoniao) Ostrich
袋鼠 (daishu) Kangaroo
螃蟹 (pangxie) Crab
犀牛 (xiniu) Rhinocero
青蛙 (qingwa) Frog
烏龜 (wugui) Turtle
企鵝 (qie) Penguin
兔子 (tuzi) Rabbit
公雞 (gongji) Rooster
大象 (daxiang) Elephant
小狗 (xiaogou) Dog
小貓 (xiaomao) Cat
小鳥 (xiaoniao) Bird
斑馬 (banma) Zebra
松鼠 (songshu) Squirrel
熊貓 (xiongmao) Panda
狐狸 (huli) Fox
獅子 (shizi) Lion
猴子 (houzi) Monkey
老虎 (laohu) Tiger
老鷹 (laoying) Eagle
蝴蝶 (hudie) Butterfly
鱷魚 (eyu) Crocodile
黑熊 (heixiong) Bear
  1. aPinyin transcriptions of the Chinese words are in parentheses

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lan, Y., Fang, S., Legault, J. et al. Second language acquisition of Mandarin Chinese vocabulary: context of learning effects. Education Tech Research Dev 63, 671–690 (2015). https://doi.org/10.1007/s11423-015-9380-y

Download citation

Keywords

  • Virtual worlds
  • Mandarin Chinese
  • Embodied cognition
  • Contextual immersion
  • Second language learning
  • Vocabulary acquisition