Educational Technology Research and Development

, Volume 62, Issue 5, pp 529–553 | Cite as

Collaborative filtering for expansion of learner’s background knowledge in online language learning: does “top-down” processing improve vocabulary proficiency?

  • Masanori Yamada
  • Satoshi Kitamura
  • Hideya Matsukawa
  • Tadashi Misono
  • Noriko Kitani
  • Yuhei Yamauchi
Development Article

Abstract

In recent years, collaborative filtering, a recommendation algorithm that incorporates a user’s data such as interest, has received worldwide attention as an advanced learning support system. However, accurate recommendations along with a user’s interest cannot be ideal as an effective learning environment. This study aims to develop and evaluate an online English vocabulary learning system using collaborative filtering that allows learners to learn English vocabulary while expanding their interests. The online learning environment recommends English news articles using information obtained from other users with similar interests. The learner then studies these recommended articles as a method of learning English. The results of a two-month experiment that compared this system to an earlier collaborative filtering system called “GroupLens” reveal that learners who used the collaborative filtering system developed in this study read various news articles and had significantly higher scores on topic-specific vocabulary tests than did those who used the previous system.

Keywords

Recommendation system Learning support Language learning Vocabulary learning 

References

  1. Allakbari, M., & Tazik, K. (2011). On the relationship between gender and perceptual language learning styles: the case of Iranian academic EFL learners. Educational Psychology: An International Journal of Experimental Educational Psychology, 31(6), 657–674. doi:10.1080/01443410.2011.592275.CrossRefGoogle Scholar
  2. Anderson, A., & Lynch, T. (1988). Listening. Oxford: Oxford University Press.Google Scholar
  3. Bobadilla, J., Serradilla, F., & Hernando, A. (2009). Collaborative filtering adapted to recommender systems of e-learning. Knowledge-Based Systems, 22(4), 261–265. doi:10.1016/j.knosys.2009.01.008.CrossRefGoogle Scholar
  4. Burgoyne, K., Whiteley, H. E., & Hutchinson, J. M. (2013). The role of background knowledge in text comprehension for children learning English as an additional language. Journal of Research in Reading, 36(2), 132–148. doi:10.1111/j.1467-9817.2011.01493.x.CrossRefGoogle Scholar
  5. Cochran, J. L., McCallum, R. S., & Bell, S. M. (2010). Three A’s: How Do Attributions, Attitudes, and Aptitude Contribute to Foreign Language Learning? Foreign Language Annals, 43, 566–582. doi:10.1111/j.1944-9720.2010.01102.x.CrossRefGoogle Scholar
  6. Dörnyei, Z. (2001). Motivational strategies in the language classroom. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511667343.CrossRefGoogle Scholar
  7. Drachsler, H., Hummel, H. G., & Koper, R. (2008). Personal recommender systems for learners in lifelong learning networks: the requirements, techniques and model. International Journal of Learning Technology, 3(4), 404–423. doi:10.1504/IJLT.2008.019376.CrossRefGoogle Scholar
  8. Field, J. (1998). Skills and strategies: Towards a new methodology for listening. ELT Journal, 52(2), 110–118. doi:10.1093/elt/52.2.110.CrossRefGoogle Scholar
  9. Garcia, T., & Pintrich, P. R. (1994). Regulating motivation and cognition in the classroom: The role of self-schemas and self-regulatory strategies. In D. H. Schunk & B. J. Zimmerman (Eds.), Self-regulation of learning and performance: Issues and educational applications (pp. 127–154). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  10. Gass, S., Mackey, A., & Pica, T. (1998). The role of input and interaction in second language acquisition. The Modern Language Journal, 82(3), 299–305. doi:10.1111/j.1540-4781.1998.tb01206.x.CrossRefGoogle Scholar
  11. Ghauth, K. I., & Abdullah, N. A. (2010). Learning materials recommendation using good learners’ ratings and content-based filtering. Educational Technology Research and Development, 58, 711–727. doi:10.1007/s11423-010-9155-4.CrossRefGoogle Scholar
  12. Gilmore, A. (2007). Authentic materials and authenticity in foreign language learning. Language Teaching, 40(2), 97–118. doi:10.1017/S0261444807004144.CrossRefGoogle Scholar
  13. Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380. doi:10.2307/202051.CrossRefGoogle Scholar
  14. Grenfell, M., & Harris, V. (2012). Making a difference in language learning: the role of sociocultural factors and of learning strategy instruction. The Curriculum Journal, 24(1), 121–152. doi:10.1080/09585176.2012.744326.CrossRefGoogle Scholar
  15. Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, 230–237. doi: 10.1145/312624.312682.
  16. Herlocker, J. L., Konstan, J. A., Riedl, J., & Terveen, L. G. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5–53. doi:10.1145/963770.963772.CrossRefGoogle Scholar
  17. Hsu, M.-H. (2006). A personalized English learning recommender system for ESL students. Expert Systems with Applications, 34, 683–688. doi:10.1016/j.eswa.2006.10.004.CrossRefGoogle Scholar
  18. Hsu, C.-K., Hwang, G.-J., & Chang, C.-K. (2013). A personalized recommendation-based mobile learning approach to improving the reading performance of EFL students. Computers and Education, 63, 327–336. doi:10.1016/j.compedu.2012.12.004.CrossRefGoogle Scholar
  19. Irvine, V., Code, J., & Richards L. (2013). Realigning Higher Education for the 21st-Century Learner through Multi-Access Learning, MERLOT Journal of Online Learning and Teaching, 9(2), 172–186. Accessed from http://jolt.merlot.org/vol9no2/irvine_0613.pdf.
  20. Ishikawa, S., Murata, M., Tono, Y., Uemura, T., Mochizuki, M., Shimizu, S., et al. (2003). JACET8000: A Word List Constructed Using a Scientific Method and its Applications to Language Teaching and Learning, a paper presented at The Third ASIALEX Biennial International Conference. Urayasu: Meikai University. 2003.Google Scholar
  21. Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T.-Y., et al. (2009). The wick in the candle of learning—Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20(8), 963–973. doi:10.1111/j.1467-9280.2009.02402.x.CrossRefGoogle Scholar
  22. Keller, J. M. (2010). Motivational design for learning and performance: The ARCS model approach. New York, NY: Springer. doi:10.1007/978-1-4419-1250-3.CrossRefGoogle Scholar
  23. Krashen, S. (1985). The input hypothesis: Issues and implications. Harlow: London House.Google Scholar
  24. Liang, G., Weining, K., & Junzhou, L. (2006). Courseware recommendation in e-learning system. In W. Liu, Q. Li, & R. W. H. Lau (Eds.), International Conference on Web-based Learning 2006, Lecture Notes in Computer Science 4181 (pp. 10–24). doi: 10.1007/11925293_2.
  25. Litman, J. A. (2005). Curiosity and the pleasures of learning: Wanting and liking new information. Cognition and Emotion, 19(6), 793–814. doi:10.1080/02699930541000101.CrossRefGoogle Scholar
  26. Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin, 116(1), 75–98. doi:10.1037/0033-2909.116.1.75.CrossRefGoogle Scholar
  27. Lynch, T. (2011). Academic Listening in the 21st Century: Reviewing a Decade of Research. Journal of English for Academic Purposes, 10(2), 79–88. doi:10.1016/j.jeap.2011.03.001.CrossRefGoogle Scholar
  28. Manolopoulou-Sergi, E. (2004). Motivation within the information processing model of foreign language learning. System, 32, 427–441. doi:10.1016/j.system.2004.04.002.CrossRefGoogle Scholar
  29. Manouselis, N., Vuorikari, R., & Van Assche, F. (2010). Collaborative recommendation of e-learning resources: An experimental investigation. Journal of Computer Assisted learning, 26, 227–242. doi:10.1111/j.1365-2729.2010.00362.x.CrossRefGoogle Scholar
  30. McNeil, L. (2012). Extending the compensatory model of second language reading. System, 40(1), 64–76. doi:10.1016/j.system.2012.01.011.CrossRefGoogle Scholar
  31. Oxford, R. (1990). Language learning strategies: what every teacher should know. Boston: Heinle & Heinle Publishers.Google Scholar
  32. Payne, M. (2011). Exploring Stephen Krashen’s ‘i + 1′ acquisition model in the classroom. Linguistics and Education, 22(4), 419–429. doi:10.1016/j.linged.2011.07.002.CrossRefGoogle Scholar
  33. Recker, M. M., & Walker, A. (2003). Supporting “Word-of-Mouth” social networks through collaborative information filtering. Journal of Interactive Learning Research, 14(1), 79–98.Google Scholar
  34. Recker, M. M., Walker, A., & Lawless, K. (2003). What do you recommend? Implementation and analyses of collaborative information filtering of web resources for education. Instructional Science, 31, 299–316. doi:10.1023/A:1024686010318.CrossRefGoogle Scholar
  35. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An open architecture for collaborative filtering of netnews. Proceedings of the 1994 ACM conference on computer supported cooperative work, 175–186. doi: 10.1145/192844.192905.
  36. Rotgans, J. I., & Schmidt, H. G. (2014). Situational interest and learning: Thirst for knowledge. Learning and Instruction, 32, 37–50. doi:10.1016/j.learninstruc.2014.01.002.CrossRefGoogle Scholar
  37. Sakai, S. (2008). A study on the relationship between developing learner autonomy and ICT in ELT. Journal of Multimedia Aided Education Research, 6(1), 46–56.Google Scholar
  38. Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-Commerce recommendation applications. Data Mining and Knowledge Discovery, 5(1–2), 115–153. doi:10.1023/A:1009804230409.CrossRefGoogle Scholar
  39. Sunstein, C. (2001). Republic.com. Princeton, NJ: Princeton University Press.Google Scholar
  40. Uemura, T., & Ishikawa, S. (2004). JACET 8000 and Asia TEFL vocabulary initiative. Journal of Asia TEFL, 1(1), 333–347.Google Scholar
  41. White, C. (2003). Language learning in distance education. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. Yamada, M., Kitamura, S., Miyahara, S., Yamauchi, Y. (2009). Vocabulary Learning Environment with Collaborative Filtering for Support of Self-regulated Learning, In J.D. Velásquez. S. A. Ríos, R. J. Howlett & L.C. Jain (Eds.), Knowledge-Based and Intelligent Information and Engineering Systems, Lecture Notes in Computer Science 5712 (pp. 523–530). doi: 10.1007/978-3-642-04592-9_65.

Copyright information

© Association for Educational Communications and Technology 2014

Authors and Affiliations

  • Masanori Yamada
    • 1
  • Satoshi Kitamura
    • 2
  • Hideya Matsukawa
    • 3
  • Tadashi Misono
    • 4
  • Noriko Kitani
    • 5
  • Yuhei Yamauchi
    • 6
  1. 1.Kyushu UniversityFukuokaJapan
  2. 2.Tokyo Keizai UniversityTokyoJapan
  3. 3.Osaka UniversityOsakaJapan
  4. 4.Shimane UniversityShimaneJapan
  5. 5.Benesse CorporationTokyoJapan
  6. 6.The University of TokyoTokyoJapan

Personalised recommendations