The effects of diagrams and time-compressed instruction on learning and learners’ perceptions of cognitive load

Abstract

The purpose of this study was to examine the effects of diagrams and time-compressed instruction on learning and learners’ perceptions of cognitive load. The following design factors, visuals (visuals and non-visuals) and time-compressed instruction (0%-normal paced, 25, and 50%) were presented to 216 university students to analyze learning in a multimedia environment. Participants listened to audio instruction of the heart and those in the visuals condition viewed 19 diagrams that corresponded to the verbal instruction. The dependent variables consisted of four achievement tests: drawing, identification, terminology, and comprehension. Review behaviors (back and replay buttons) and learners’ perceptions of cognitive load served as additional dependent variables. The results of this study indicate that listening to normal or moderately compressed (25%) instruction in a multimedia environment supports learning. At these speeds, cognitive load is not increased thus allowing learners to gain a conceptual understanding of the material.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Arons, B. (1992). Techniques, perception, and application of time-compressed instruction. In Proceedings presented at the conference, American voice i/o society (pp. 169–177). Retrieved April 1st, 2007, from http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/5993/ftp:zSzzSzftp.media.mit.eduzSzpubzSzbaronszSzTimeCompressionAVIOS92.pdf/arons92technique.pdf.

  2. Ayres, P., & Sweller, J. (2005). The split attention principle in multimedia learning. In R. Mayer (Ed.), The Cambridge handbook of multimedia (pp. 135–146). NY: Cambridge University Press.

    Google Scholar 

  3. Baddeley, A. D. (1998). Human memory: Theory and practice. Boston: Allyn and Bacon.

    Google Scholar 

  4. Barron, A. E. (2004). Auditory instruction. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (2nd ed., pp. 949–978). New Jersey: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  5. Benz, C. R. (1971). Effects of time-compressed instruction upon the comprehension of a visual oriented television lecture. Unpublished doctoral dissertation, Wayne State University.

  6. Bray, J. H., & Maxwell, S. E. (1982). Analyzing and interpreting significant MANOVAs. Review of Educational Research, 52, 340–367.

    Google Scholar 

  7. Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53–61.

    Article  Google Scholar 

  8. Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332.

    Article  Google Scholar 

  9. Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149–170.

    Article  Google Scholar 

  10. Cohen, B. H., & Lea, R. B. (2004). Essentials of statistics for the social and behavioral sciences. Hoboken, NJ: John Wiley & Sons, Inc.

  11. DeLeeuw, K. E., & Mayer, R. E. (2008). A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology, 100(1), 223–234.

    Article  Google Scholar 

  12. Duker, S. (1974). Time-compressed instruction. Metuchen, NJ: Scarecrow.

    Google Scholar 

  13. Dwyer, F. M. (1965). An experimental evaluation of the relative effectiveness of selected visual illustrations in teaching science concepts to college freshmen. Unpublished Dissertation. The Pennsylvania State University, University Park, PA.

  14. Dwyer, F. M. (1972). A guide for improving visual instruction. Learning services, box 784. PA: State College.

    Google Scholar 

  15. Dwyer, F. M. (1978). Strategies for improving visual learning. Learning services, box 784. PA: State College.

    Google Scholar 

  16. Dwyer, F. M., & Lamberski, R. (1983). The instructional effect of coding (color and black and white) in facilitating students’ information acquisition and retrieval. Educational Communication & Technology Journal, 31, 9–21.

    Google Scholar 

  17. Eilam, B., & Poyas, Y. (2008). Learning with multiple representations: Extending multimedia learning beyond the lab. Learning and Instruction, 18, 368–378.

    Article  Google Scholar 

  18. Foulke, E. A., & Sticht, T. G. (1967). The intelligibility and comprehension of accelerated speech. In Proceedings of the Louisville conference on time compressed speech, United States (pp. 21–28).

  19. Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Designing instructional examples to reduce intrinsic cognitive load: Molar versus modular presentation of solution procedures. Instructional Science, 32, 33–58.

    Article  Google Scholar 

  20. He, L., & Gupta, A. (2001). Exploring benefits of non-linear time compression. In Proceedings presented at the ACM international conference on multimedia, Ottawa, Canada (pp. 382–391).

  21. Heiman, G. W., Leo, R. J., & Leighbody, G. (1986). Word intelligibility decrements and the comprehension of time-compressed instruction. Perception & Psychophysics, 40(6), 407–411.

    Google Scholar 

  22. Janse, E., Nooteboom, S., & Quene, H. (2001). Word-level intelligibility of time- compressed speech: Porsodic and segmental factors. The Netherlands, Utrecht Institute of Linguistics. Retrieved April 1st, 2007, from http://www.let.uu.nl/~Sieb.Nooteboom/personal/timecompressed.pdf.

  23. Jeung, H., Chandler, P., & Sweller, J. (1997). The role of visual indicators in dual sensory mode instruction. Educational Psychology, 17(3), 329–343.

    Article  Google Scholar 

  24. Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13, 351–371.

    Article  Google Scholar 

  25. Koroghlanian, C. M., & Sullivan, H. J. (2000). Audio and text density in computer-based instruction. Journal of Educational Computing Research, 22(2), 217–230.

    Google Scholar 

  26. Low, R., & Sweller, J. (2005). The modality principle in multimedia learning. In R. Mayer (Ed.), The Cambridge handbook of multimedia (pp. 147–158). NY: Cambridge University Press.

    Google Scholar 

  27. Lucking, R. A., Purcell, S., & Christmann, E. R. (2006). Can you podcast? Science Scope, 30(1), 16.

    Google Scholar 

  28. Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.

    Google Scholar 

  29. Mayer, R. E. (2005). Introduction to multimedia learning. In R. Mayer (Ed.), The Cambridge handbook of multimedia (pp. 135–146). NY: Cambridge University Press.

    Google Scholar 

  30. Mayer, R., & Anderson, R. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84, 444–452.

    Article  Google Scholar 

  31. Mayer, R., & Chandler, P. (2001). When learning is just a click away: Does simple user interaction foster deeper understanding of multimedia messages? Journal of Educational Psychology, 93(2), 390–397.

    Article  Google Scholar 

  32. Mayer, R. E., Dow, G. T., & Mayer, S. (2003). Multimedia learning in an interactive self- explaining environment: What works in the design of agent-based microworlds? Journal of Educational Psychology, 95(4), 806–813.

    Article  Google Scholar 

  33. Mayer, R. E., Heiser, J., & Lonn, S. (2001). Cognitive constraints on multimedia learning: When presenting more materials results in less understanding. Journal of Educational Psychology, 91(1), 187–198.

    Article  Google Scholar 

  34. Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43–52.

    Article  Google Scholar 

  35. Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389–401.

    Article  Google Scholar 

  36. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review, 63, 81–97.

    Article  Google Scholar 

  37. Monroe, A. H., & Ehninger, D. (1974). Principles and types of speech compression. Glenview, IL: Scott Foreman.

    Google Scholar 

  38. Moreno, R. (2006). When worked examples don’t work: Is cognitive load theory at an Impasse? Learning and Instruction, 16, 170–181.

    Article  Google Scholar 

  39. Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Education Psychology, 87(2), 319–334.

    Article  Google Scholar 

  40. Ollerenshaw, A., Aidman, E., & Kidd, G. (1997). Is an illustration always worth ten thousand words? Effects of prior knowledge, learning style and multimedia illustrations on text comprehension. International Journal of Instructional Media, 24(3), 227–238.

    Google Scholar 

  41. Olsen, J. S. (1985). A study of the relative effectiveness of verbal and visual augmentation of rate-modified speech in the presentation of technical material. Unpublished Dissertation. University of Pittsburgh.

  42. Orr, D. B. (1968). Time-compressed instruction––a perspective. Journal of Communication, 18(3), 288.

    Article  Google Scholar 

  43. Orr, D. B., & Friedman, H. L. (1967). The effect of listening aids on the comprehension of time-compressed instruction. Journal of Communication, 17(3), 223.

    Article  Google Scholar 

  44. Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1–4.

    Article  Google Scholar 

  45. Paivio, A. (1979). Imagery and verbal processes. New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  46. Paivio, A. (1986). Mental representations. New York: Oxford University Press.

    Google Scholar 

  47. Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45(3), 255–287.

    Google Scholar 

  48. Paivio, A., & Csapo, K. (1969). Concrete-image and verbal memory codes. Journal of Experimental Psychology, 80, 279–285.

    Article  Google Scholar 

  49. Pallant, J. F. (2007). SPSS survival manual: A step-by-step guide to data analysis with SPSS. New York: McGraw-Hill.

    Google Scholar 

  50. Pastore, R. (2008). Students’ perception of podcasts in the classroom. International Journal of Instructional Technology and Distance Learning, 5(12).

  51. Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12, 61–86.

    Article  Google Scholar 

  52. Schnotz, W., & Kurschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19, 469–508.

    Article  Google Scholar 

  53. Schnotz, W., & Lowe, R. (2003). External and internal representations in multimedia learning. Learning and Instruction, 13, 117–123.

    Article  Google Scholar 

  54. Sorden, S. D. (2005). A cognitive approach to instructional design for multimedia learning. Informing Science Journal, 8, 263–279.

    Google Scholar 

  55. Stevens, J. (2002). Applied multivariate statistics for the social sciences (4th ed.). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  56. Stoten, S. (2007). Using podcasts for nursing education. The Journal of Continuing Education in Nursing, 38(2).

  57. Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4, 295–312.

    Article  Google Scholar 

  58. Sweller, J., & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and Instruction, 8(4), 351–362.

    Article  Google Scholar 

  59. Sweller, J., van Merrienboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.

    Article  Google Scholar 

  60. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Pearson Education.

    Google Scholar 

  61. Taylor, S. E., Frankenpohl, H., & Pettee, J. L. (1960). Grade level norms for the components of the fundamental reading skills. EDL Research and Information Bulletin, 3.

  62. Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology, 3(4), 257–287.

    Google Scholar 

  63. Van Merrienboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147–177.

    Article  Google Scholar 

  64. Verhelst, W., & Roelands, M. (1993). An overlap-add technique based on waveform similarity (WSOLA) for high quality time-scale modification speech. Paper presented at the International Conference on Acoustics, Speech, and Signal Processing, Retrieved April 1st, 2007, from http://www.etro.vub.ac.be/Research/DSSP/Publications/int_conf/ICASSP-1993.pdf.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raymond S. Pastore.

Additional information

This paper was accepted under the editorship of Steven M. Ross.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pastore, R.S. The effects of diagrams and time-compressed instruction on learning and learners’ perceptions of cognitive load. Education Tech Research Dev 58, 485–505 (2010). https://doi.org/10.1007/s11423-009-9145-6

Download citation

Keywords

  • Time-compressed instruction
  • Multimedia
  • Multiple representations
  • Cognitive load
  • Podcasts
  • Diagrams