Opportunities and tensions in family science: challenging dominant paradigms of science education

Abstract

We design and research family-based science experiences that provide opportunities to enact discovery-oriented approaches to science learning that challenge dominant conceptions of what counts as science learning by bringing families’ sensemaking to the forefront. We engaged two approaches. First, we provided families with simple activity prompts and conversation starters for engaging in playful and exploratory science-relevant experiences on their own. Second, we explicitly explored families’ views of science during family science evenings at their children’s school. The different contexts helped us learn how families take up or resist efforts toward a family-centric view of science learning. The research was ethnographic, drawing upon socio-cultural views of learning, with novice/more-expert interactions crucial, and local knowledges and cultural practices being resourced. The analysis surfaced the ideas that: (1) families can be expansive sites for science learning; (2) parental voice and concerns about science learning come into tension with alternatives and school-based paradigms; (3) there is promise in designed resources for encouraging epistemic agency; (4) family dynamics around epistemic practices are present and need airing and addressing. We discuss how opportunities and tensions that co-arise need to inform further research and the design of family science experiences.

Resumen

La educación de las ciencias puede alejar a los niños y adultos de participar en dar sentido al mundo si se enfocan en hechos codificados, privilegiando vocabulario a la expensa de dar sentido, y enviando mensajes implícitos sobre quién y qué cuenta como ciencia. Exploramos formas de diseñar e investigar experiencias del aprendizaje de ciencias basadas en la familia que brindan oportunidades para implementar enfoques orientados al descubrimiento de las prácticas de las ciencias que estén socialmente y culturalmente conectados y sean relevantes y correspondientemente, con menos potencia de ser alienantes. Nuestra perspectiva es proactiva, y con el objetivo de ir más allá de las normas de las ciencias escolares para encontrar perspectivas alternativas. Usamos dos métodos para entender cómo ampliar el entendimiento que tienen familias sobre el aprendizaje de las ciencias. Primero, les dimos a las familias sugerencias de actividades y temas de conversación para que participen en experiencias divertidas y relacionadas al proceso científico en su propio tiempo. Después, exploramos directamente las perspectivas dominantes en las conversaciones durante un taller de ciencias para familias en las escuelas de sus hijos. Los contextos diferentes nos ayudan a descubrir cómo las familias aceptan y/o rechazan la idea de la familia siendo central al aprendizaje de las ciencias. El enfoque consiste en realizar una investigación etnográfica y con una perspectiva sociocultural para desarrollar recursos para el aprendizaje de familias en las ciencias (Luce, Goldman and Vea 2017). Nos basamos en principios de diseño guiados por teorías socioculturales del aprendizaje, como los que explicó Lev Vygotsky (Vygotsky 1978), con interacciones a otros que son importantes al aprendizaje, e interacciones entre aprendices y personas más expertas. También anticipamos que el aprendizaje de las ciencias basadas en la familia depende de formas de conocimientos y costumbres culturales locales (Moll 2014). En cada tipo de evento involucrando a familias que describimos, le dimos a las familias temas generativos, pero no muy estructurados, para ayudarles a comenzar. El objetivo de los temas era generar participación, exploración, y la experimentación de fenómenos ampliamente accesibles de manera que las familias pudieran hacer sus propias investigaciones. El análisis de actividades diseñadas para desafiar las ideas dominantes del aprendizaje de ciencia surgió las ideas que: (1) las familias pueden ser sitios expansivos para la producción del aprendizaje de las ciencias; (2) la voz y la preocupación de los padres sobre el aprendizaje de las ciencias entran en tensión con los apoyos diseñados a proveer alternativas a las paradigmas dominantes basados en la escuela del aprendizaje de las ciencias; (3) hay promesa en apoyos de diseño y recursos diseñados para fomentar autonomía epistémica; (4) las dinámicas de familia sobre las prácticas epistémicas están presentes en la ciencia practicada en la familia y necesitan atención. El artículo concluye con una discusión de cómo estas oportunidades y tensiones puedan informar el futuro del diseño de experiencias del aprendizaje para familias, investigaciones sobre el aprendizaje de familias, y el desarrollo de la educación de las ciencias que da una alternativa a los paradigmas dominantes. Necesitamos continuar colaborando con familias en cuestionar y entender estas tensiones mientras trabajando con padres para ayudarlos reimaginar sus papeles en abrir las puertas a las ciencias fuera de las escuelas. Las investigaciones futuras tal vez consideren nuevos métodos para trabajar con familias, para que investigadores y diseñadores puedan posicionarse como aliados y ayudarlas a legitimar sus papeles y desarrollar su autonomía como educadores de las ciencias fuera de las limitaciones institucionales.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Ash, D. (2007). Using video data to capture discontinuous science meaning making in non-school settings. In Video research in the learning sciences (pp. 207–226).

  2. Bang, M., Warren, B., Rosebery, A. S., & Medin, D. (2012). Desettling expectations in science education. Human Development, 55, 302–318. https://doi.org/10.1159/000345322.

    Article  Google Scholar 

  3. Booker, A., & Goldman, S. (2016). Participatory design research as a practice for systemic repair: Doing hand-in-hand math research with families. Cognition and Instruction, 34(3), 222–235. https://doi.org/10.1080/07370008.2016.1179535.

    Article  Google Scholar 

  4. Briseño-Garzón, A. (2013). More than science: Family learning in a Mexican science museum. Cultural Studies of Science Education, 8(2), 307–327. https://doi.org/10.1007/s11422-012-9477-0.

    Article  Google Scholar 

  5. Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141–178. https://doi.org/10.1207/s15327809jls0202_2.

    Article  Google Scholar 

  6. Brown, B. A., & Kloser, M. (2009). Conceptual continuity and the science of baseball: Using informal science literacy to promote students’ science learning. Cultural Studies of Science Education, 4(4), 875–897. https://doi.org/10.1007/s11422-009-9198-1.

    Article  Google Scholar 

  7. Calabrese Barton, A., Hindin, T. J., Contento, I. R., Trudeau, M., Yang, K., Hagiwara, S., & Koch, P. D. (2001). Underprivileged urban mothers’ perspectives on science. Journal of Research in Science Teaching, 38(6), 688–711. https://doi.org/10.1002/tea.1026.

    Article  Google Scholar 

  8. Calabrese Barton, A., & Yang, K. (2000). The culture of power and science education: Learning from Miguel. Journal of Research in Science Teaching, 37(8), 871–889. https://doi.org/10.1002/1098-2736(200010)37:8<871::AID-TEA7>3.0.CO;2-9

    Article  Google Scholar 

  9. Crowley, K., Callanan, M. A., Jipson, J. L., Galco, J., Topping, K., & Shrager, J. (2001). Shared scientific thinking in everyday parent-child activity. Science Education, 85, 712–732. https://doi.org/10.1002/sce.1035.

    Article  Google Scholar 

  10. Derry, S., Pea, R., Barron, B., Engle, R., Erickson, F., Goldman, R., et al. (2010). Conducting video research in the learning sciences: Guidance on selection, analysis, technology, and ethics. Journal of the Learning Sciences, 19(1), 3–53. https://doi.org/10.1080/10508400903452884.

    Article  Google Scholar 

  11. Furberg, A., & Arnseth, H. C. (2009). Reconsidering conceptual change from a socio-cultural perspective: Analyzing students’ meaning making in genetics in collaborative learning activities. Cultural Studies of Science Education, 4(1), 157–191. https://doi.org/10.1007/s11422-008-9161-6.

    Article  Google Scholar 

  12. Goldman, S., & Jimenez, O. (2016). Exploring the promise and limits of a reciprocal research and design process: The case of family math applications. In V. Svihla & R. Reeve (Eds.), Design as scholarship: Case studies from the learning sciences. New York: Routledge.

    Google Scholar 

  13. González, N., Moll, L. C., & Amanti, C. (2005). Funds of knowledge: Theorizing practices in households, communities, and classrooms. New York: Routledge.

    Google Scholar 

  14. Hammer, D. M., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89–120). Greenwich, CT: Information Age Publishing.

    Google Scholar 

  15. Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The Journal of the Learning Sciences, 4(1), 39–103. https://doi.org/10.1207/s15327809jls0401_2.

    Article  Google Scholar 

  16. Jung, Y. J., Whalen, D. P., Zimmerman, H. T. (2020). Epistemic agency shifts between children and parents during inventing with robotics at museum-based makerspace. In Gresalfi, M. and Horn, I. S. (Eds.), The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020, Volume 2 (pp. 851-852). Nashville, TN: International Society of the Learning Sciences. 

  17. Lave, J. (1993). The practice of learning. In S. Chaiklin & J. Lave (Eds.), Understanding practice: Perspectives on activity and context (pp. 3–32). Cambridge: Cambridge University Press.

    Google Scholar 

  18. Luce, M. R., Goldman, S. V., Vea, T. (June, 2016). Analysis of mechanistic reasoning in family conversations in outdoor settings. Paper presented at the biannual meeting of the Jean Piaget Society, Chicago, Illinois.

  19. Luce, M. R., Goldman, S., & Vea, T. (2017). Designing for family science explorations anytime, anywhere. Science Education, 101(2), 251–277. https://doi.org/10.1002/sce.21259.

    Article  Google Scholar 

  20. Lyle, J. (2003). Stimulated recall: A report on its use in naturalistic research. British Educational Research Journal, 29(6), 861–878. https://doi.org/10.1080/0141192032000137349.

    Article  Google Scholar 

  21. McDermott, R., & Webber, V. (1998). When is math or science? In Greeno, J. G. and Goldman, S. V. (Eds.) Thinking practices in mathematics and science learning (pp. 321–339). Mahwah, NJ: Lawrence Earlbaum Associates.

  22. Medin, D. L., & Bang, M. (2014). Who’s asking?: Native science, Western science, and science education. Cambridge, MA: MIT Press.

    Google Scholar 

  23. Miller, E., Manz, E., Russ, R., Stroupe, D., & Berland, L. (2018). Addressing the epistemic elephant in the room: Epistemic agency and the next generation science standards. Journal of Research in Science Teaching, 55(7), 1053–1075. https://doi.org/10.1002/tea.21459.

    Article  Google Scholar 

  24. Moll, L. C. (2014). L.S. Vygotsky and Education. New York: Routledge.

    Google Scholar 

  25. National Research Council. (2009). Learning science in informal environments: People, places, and pursuits. Washington, DC: The National Academies Press. https://doi.org/10.17226/12190.

  26. Piaget, J. (1929). The child’s conception of the world. London: Routledge and Kegan Paul.

    Google Scholar 

  27. Rosebery, A. S., Ogonowski, M., DiSchino, M., & Warren, B. (2010). “The coat traps all your body heat”: Heterogeneity as fundamental to learning. Journal of the Learning Sciences, 19(3), 322–357. https://doi.org/10.1080/10508406.2010.491752.

    Article  Google Scholar 

  28. Roth, W. M., & Calabrese Barton, A. (2004). Rethinking scientific literacy. New York, NY: Routledge.

    Google Scholar 

  29. Silander, M., Grindal, T., Hupert, N., Garcia, E., Anderson, K., Vahey, P., & Pasnik, S. (2018). What parents talk about when they talk about learning: A national survey about young children and science. Waltham, MA: Education Development Center.

  30. Solis, G., & Callanan, M. (2016). Evidence against deficit accounts: Conversations about science in Mexican heritage families living in the United States. Mind, Culture, and Activity, 23(3), 212–224. https://doi.org/10.1080/10749039.2016.1196493.

    Article  Google Scholar 

  31. Stroupe, D. (2014). Examining classroom science practice communities: How teachers and students negotiate epistemic agency and learn science-as-practice. Science Education, 98(3), 487–516. https://doi.org/10.1002/sce.21112.

    Article  Google Scholar 

  32. Stroupe, D., Caballero, M. D., & White, P. (2018). Fostering students’ epistemic agency through the co-configuration of moth research. Science Education, 102(6), 1176–1200. https://doi.org/10.1002/sce.21469.

    Article  Google Scholar 

  33. Tzou, C., Meixi, Suárez, E., Bell, P., LaBonte, D., Starks, E., et al. (2019). Storywork in STEM-art: Making, materiality and robotics within everyday acts of Indigenous presence and resurgence. Cognition and Instruction, 37(3), 306–326. https://doi.org/10.1080/07370008.2019.1624547.

    Article  Google Scholar 

  34. Vossoughi, S. (2014). Social analytic artifacts made concrete: A study of learning and political education. Mind, Culture, and Activity, 21(4), 353–373. https://doi.org/10.1080/10749039.2014.951899.

    Article  Google Scholar 

  35. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Cambridge, MA: Harvard University Press.

  36. Warren, B., Ballenger, C., Ogonowski, M., Rosebery, A. S., & Hudicourt-Barnes, J. (2001). Rethinking diversity in learning science: The logic of everyday sense-making. Journal of Research in Science Teaching, 38, 529–552. https://doi.org/10.1002/tea.1017.

    Article  Google Scholar 

Download references

Acknowledgements

We thank each family and school that participated in the Playful Science project. The project was made possible by Ggrants from the Gordon and Betty Moore Foundation (Grant No. 3343.01).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shelley Goldman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lead Editor: C. Castano Rodriguez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goldman, S., Luce, M.R. & Vea, T. Opportunities and tensions in family science: challenging dominant paradigms of science education. Cult Stud of Sci Educ (2020). https://doi.org/10.1007/s11422-020-09998-0

Download citation

Keywords

  • Family science
  • Science paradigms
  • Families as educators
  • Epistemic agency