SAQ, SSI and STSE education: defending and extending “science-in-context”

Abstract

Many scholars suggest that recent major science education initiatives apparently tied to intense economic competitiveness and growth have prioritized education about “products” (e.g., laws, theories, innovations) and skills (e.g., experimentation) of fields of science and technology. Such initiatives also, apparently, tend to avoid research findings from fields of humanities and social sciences that frequently link, more or less directly, fields of science and technology with many often-controversial harms for individuals, societies and environments. Cited as particularly problematic among humanity’s many challenges is devastation from climate change associated with humans’ uses of petroleum-fuelled technologies. Over about the last five decades, however, science education scholars have been conducting research that may help educate students about “science-in-context” (SinC) conceptions, perspectives, skills, etc., regarding controversial harms like those mentioned above. In this review article, we analyze summaries provided here by four prominent scholars in their respective SinC fields, that is, about: Science, Technology, Society and Environment relationships, Socially-Acute Questions and Socioscientific Issues. Based on extended experiences by the authors here with aspects of the three SinC fields, we suggest that despite some niche differences in ontological, epistemological and axiological positions of scholarship among them, their congruences perhaps offer hope to those wanting to provide students with more holistic and critical conceptions of associations of fields of science and technology with many of humanity’s numerous personal, social and environmental threats that students may, in turn, use to contribute to a more just and environmentally sound world.

Résumé

Pour de nombreux chercheurs, les grandes initiatives récentes en matière d’éducation scientifique ont donné la priorité à une éducation aux «produits» (lois, théories, innovations) et aux compétences (expériences, par exemple) dans les domaines de l’enseignement des sciences et des technologies. Il apparait également que de telles initiatives ne mettent pas en évidence certaines des relations entre le développement des sciences et des technologies et les effets délétères sur les individus, les sociétés et les environnements. Par exemple, parmi les nombreux défis auxquels l’humanité est confrontée, l’on compte les impacts climatiques associés à l’utilisation par l’être humain de technologies fonctionnant au pétrole. Cela dit, au cours des cinq dernières décennies, des chercheurs du domaine de l’éducation aux sciences ont mené des travaux qui permettent de familiariser les élèves avec les sciences en contexte (SinC). Dans cet article, nous portons un regard analytique sur les synthèses fournies par quatre chercheurs de premier plan dans leur champ respectif des SinC: il s’agit des relations entre les sciences, la technologie, la société et l’environnement (STSE), des questions socialement vives (QSV) et des questions socioscientifiques (SSI). À la lumière des points de vue de ces chercheurs, nous suggérons qu’en dépit des quelques différences de natures ontologiques, épistémologiques et axiologiques, ces champs offrent la possibilité d’alimenter des visions plus holistiques et critiques des relations entre le développement des sciences et des technologies ainsi de nombreux problèmes environnementaux, personnels et sociaux. Ces conceptions, croyons-nous, pourraient être mises à contribution par les élèves dans la perspective d’un monde plus juste et plus respectueux de l’environnement.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aikenhead, G. S., & Fleming, R. W. (1975). Science: A way of knowing. Saskatoon, SK: Curriculum Studies, University of Saskatchewan.

    Google Scholar 

  2. Aikenhead, G., & Michell, H. (2011). Bridging cultures: Indigenous and scientific ways of knowing nature. Toronto: Pearson Canada Inc.

    Google Scholar 

  3. American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press.

    Google Scholar 

  4. Ball, S. J. (2012). Global education inc.: New policy networks and the neo-liberal imaginary. Abingdon: Routledge. https://doi.org/10.4324/9780203803301.

    Book  Google Scholar 

  5. Barrett, S., & Pedretti, E. (2006). Conflicting orientations to science–technology–society-environment education. School Science and Mathematics, 106, 21–31.

    Article  Google Scholar 

  6. Beck, U. (2001). La société du risque, sur la voie d’une autre modernité. Paris: Flammarion.

    Google Scholar 

  7. Bencze, J. L. (2010). Promoting student-led science and technology projects in elementary teacher education: Entry into core pedagogical practices through technological design. International Journal of Technology and Design Education, 20, 43–62. https://doi.org/10.1007/s10798-008-9063-7.

    Article  Google Scholar 

  8. Bencze, J. L. (Ed.). (2017). Science and technology education promoting wellbeing for individuals, societies and environments. Dordrecht: Springer. https://doi.org/10.1007/978-3-319-55505-8.

    Book  Google Scholar 

  9. Bencze, L., Reiss, M., Sharma, A., & Weinstein, M. (2018). STEM education as ‘Trojan horse’: Deconstructed and reinvented for all. In L. Bryan & K. Tobin (Eds.), 13 questions: Reframing education’s conversation: Science (pp. 69–87). New York: Peter Lang.

    Google Scholar 

  10. Breyman, S., Campbell, N., Eubanks, V., & Kinchy, A. (2017). STS and social movements: Pasts and futures. In U. Felt, F. Rayvon, C. A. Miller, & L. Smith-Doerr (Eds.), The handbook of science and technology studies (4th ed., pp. 289–317). Cambridge, MA: MIT Press.

    Google Scholar 

  11. Callon, M. (1990). Techno-economic networks and irreversibility. The Sociological Review, 38(S1), 132–161. https://doi.org/10.1111/j.1467-954X.1990.tb03351.x.

    Article  Google Scholar 

  12. Charmaz, K. (2014). Constructing grounded theory (2nd ed.). New York: Sage.

    Google Scholar 

  13. Chevallard, Y. (1997). Questions vives, savoirs moribonds: le problème curriculaire aujourd’hui. Colloque Défendre et transformer l’école pour tous, Marseille, 3,4 et 5 octobre 1997.

  14. Collins, H., & Evans, R. (2017). Why democracies need science. Cambridge: Wiley.

    Google Scholar 

  15. Cornali, F. (2017). Talking with the scientists: Promoting scientific citizenship at school through participatory and deliberative approach. Studies in Media and Communication, 5, 132–144. https://doi.org/10.11114/smc.v5i2.2804.

    Article  Google Scholar 

  16. Council of Ministers of Education, Canada [CMEC] (1997). Common framework of science learning outcomes, K-12: Pan-Canadian protocol for collaboration on school curriculum. Retrieved June 16, 2010, from http://204.225.6.243/science/framework/.

  17. Creswell, J. W. (2007). Qualitative inquiry and research design: Choosing among five approaches (2nd ed.). Thousand Oaks, CA: Sage.

    Google Scholar 

  18. Eijkelhof, H. M. C., Kortland, K., & Lijnse, P. L. (1996). STS through physics and environmental education in the Netherlands. In R. E. Yager (Ed.), Science/technology/society as reform in science education (pp. 249–260). Albany, NY: SUNY Press.

    Google Scholar 

  19. Foucault, M. (2008). The birth of biopolitics: Lectures at the Collége de France, 1978–1979 (Ed., M. Senellart). New York: Palgrave Macmillan.

    Google Scholar 

  20. Freire, (1972). Pedagogy of the oppressed. Harmondsworth: Penguin Books Ltd.

    Google Scholar 

  21. Freire, P. (1998). Pedagogy of freedom: Ethics, democracy, and civic courage. New York: Rowan and Littlefield.

    Google Scholar 

  22. Gallagher, J. J. (1971). A broader base for science teaching. Science Education, 55, 329–338. https://doi.org/10.1002/sce.3730550312.

    Article  Google Scholar 

  23. Geels, F. W., & Schot, J. W. (2007). Typology of sociotechnical transition pathways. Research Policy, 36, 399–417. https://doi.org/10.1016/j.respol.2007.01.003.

    Article  Google Scholar 

  24. Gough, A. (2002). Mutualism: A different agenda for environmental and science education. International Journal of Science Education, 24, 1201–1215. https://doi.org/10.1080/09500690210136611.

    Article  Google Scholar 

  25. Grace, M. (2009). Developing high quality decision-making discussions about biological conservation in a normal classroom setting. International Journal of Science Education, 31, 551–570. https://doi.org/10.1080/09500690701744595.

    Article  Google Scholar 

  26. Green, T. F. (1971). The activities of teaching. New York, NY: McGraw-Hill.

    Google Scholar 

  27. Hackett, E. J. (2000). Trends and opportunities in science and technology studies: A view from the National Science Foundation. In D. D. Kumar & D. E. Chubin (Eds.), Science, technology, and society: A sourcebook on research and practice (pp. 277–291). New York: Kluwer Academic/Plenum. https://doi.org/10.1007/978-94-011-3992-2.

    Google Scholar 

  28. Herman, B. C., Sadler, T. D., Zeidler, D. L., & Newton, M. (2018). A socioscientific issues approach to environmental education. In G. Reis & J. Scott (Eds.), International perspectives on the theory and practice of environmental education: A reader. Dordrecht: Springer. https://doi.org/10.1007/978-3-319-67732-3_11.

    Google Scholar 

  29. Hodson, D. (2008). Towards scientific literacy: A teachers’ guide to the history, philosophy and sociology of science. Rotterdam: Sense.

    Book  Google Scholar 

  30. Hodson, D. (2011). Looking to the future: Building a curriculum for social activism. Rotterdam: Sense Publishers. https://doi.org/10.1007/978-94-6091-472-0.

    Book  Google Scholar 

  31. Hurd, P. D. (1975). Science, technology and society: New goals for interdisciplinary science teaching. The Science Teacher, 42(2), 27–30.

    Google Scholar 

  32. Kahn, S., & Zeidler, D. L. (2017). A case for the use of conceptual analysis in science education research. Journal of Research in Science Teaching, 54, 538–551. https://doi.org/10.1002/tea.21376.

    Article  Google Scholar 

  33. Latour, B. (1987). Science in action. Cambridge: Harvard University Press.

    Google Scholar 

  34. Latour, B. (2005). Reassembling the social: An introduction to actor-network theory. Oxford: Oxford University Press.

    Google Scholar 

  35. Layton, D. (1988). Revaluing the T in STS. International Journal of Science Education, 10, 367–378. https://doi.org/10.1080/0950069880100404.

    Article  Google Scholar 

  36. Legardez, A., & Simonneaux, L. (2006). L’école a l’épreuve de l’actualité: Enseigner les questions socialement vives. Paris: ESF.

    Google Scholar 

  37. Levinson, R. (2018). Realizing the school science curriculum. The Curriculum Journal, 29(4), 522–537. https://doi.org/10.1080/09585176.2018.1504314.

    Article  Google Scholar 

  38. Magee, G. A. (2010). The Hegel dictionary. New York, NY: Continuum International Publishing Group.

    Google Scholar 

  39. Martin, S. N., & Siry, C. (2011). Networks of practice in science education research: A global context. Journal of Research in Science Teaching, 48, 592–623. https://doi.org/10.1002/tea.20425.

    Article  Google Scholar 

  40. Marx, K., & Engels, F. (1846 [1976]). The German ideology. Moscow: Progress Publishers.

  41. Matthews, M. R. (Ed.). (2017). History, philosophy and science teaching. Dordrecht: Springer. https://doi.org/10.1007/978-3-319-62616-1.

    Book  Google Scholar 

  42. McLaren, P. (2000). Che Guevara, Paulo Freire, and the pedagogy of the revolution. Lanham, MD: Rowman and Littlefield.

    Google Scholar 

  43. Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future. London: Nuffield Foundation.

    Google Scholar 

  44. Mirowski, P. (2011). Science-mart: Privatizing American science. Cambridge, MA: Harvard University Press. https://doi.org/10.4159/harvard.9780674061132.

    Book  Google Scholar 

  45. Molinatti, G. (2011). Médiation des sciences du cerveau Approche didactique et communicationnelle de rencontres entre neuroscientifiques et lycéens. Thèse de doctorat en muséologie, Museum national d’histoire naturelle.

  46. Morin, O., Simonneaux, L., & Simonneaux, J. (2013a). Forum et wiki, des environnements collaboratifs pour éduquer au développement durable (pp. 241–256). Hors Série: Penser l’éducation.

    Google Scholar 

  47. Morin, O., Simonneaux, L., Simonneaux, J., Tytler, R., & Barraza, L. (2014). Developing and using an S3R model to analyse reasoning in web-based cross-national exchanges on sustainability. Science Education, 98, 517–542. https://doi.org/10.1002/sce.21113.

    Article  Google Scholar 

  48. Morin, O., Simonneaux, L., & Tytler, R. (2017). Engaging with socially acute questions: Development and validation of an interactional reasoning framework. Journal of Research in Science Teaching, 54, 825–851. https://doi.org/10.1002/tea.21386.

    Article  Google Scholar 

  49. Morin, O., Tytler, R., Barraza, L., Simonneaux, L., & Simonneaux, J. (2013b). Cross cultural exchange to support reasoning about socio-scientific sustainability issues. Teaching Science, 59, 16–22.

    Google Scholar 

  50. Mueller, M. P., Zeidler, D. L., & Jenkins, L. L. (2011). Earth’s role in moral reasoning and functional scientific literacy. In J. DeVitis & T. Yu (Eds.), Character and moral education: A reader (pp. 382–391). New York, NY: Peter Lang.

    Google Scholar 

  51. Navis-Iannini, A. (2017). Public engagement with critical exhibitions: Insights from a Brazilian and a Canadian science museum. Unpublished PhD dissertation, University of Toronto.

  52. Pedretti, E. (2014). Environmental education and science education: Ideology, hegemony, traditional knowledge and alignment. Brazilian Journal of Research in Science Teaching, 14, 305–314.

    Google Scholar 

  53. Pedretti, E. G., Bencze, L., Hewitt, J., Romkey, L., & Jivraj, A. (2007). Promoting issues-based STSE perspectives in science teacher education: Problems of identity and ideology. Science and Education, 17, 941–960. https://doi.org/10.1007/s11191-006-9060-8.

    Article  Google Scholar 

  54. Pedretti, E., & Nazir, J. (2011). Currents in STSE education: Mapping a complex field, 40 years on. Science Education, 95, 601–626. https://doi.org/10.1002/sce.20435.

    Article  Google Scholar 

  55. Pedretti, E., & Nazir, J. (2015). Science, technology and society (STS). In R. Gunstone (Ed.), Encyclopedia of science education (pp. 932–935). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2150-0.

    Google Scholar 

  56. Pierce, G. B. (2013). Contemporaneity and antagonism in modernist and postmodern aesthetics. Comparatist, 37, 54–70. https://doi.org/10.1353/com.2013.0006.

    Article  Google Scholar 

  57. Rennie, L., Venville, G., & Wallace, J. (2012). Knowledge that counts in a global community. New York: Routledge. https://doi.org/10.4324/9780203817476.

    Book  Google Scholar 

  58. Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  59. Roberts, D. A., & Bybee, R. W. (2011). Scientific literacy, science literacy, and science education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. II, pp. 545–558). New York, NY: Routledge. https://doi.org/10.4324/9780203097267.ch27.

    Google Scholar 

  60. Roudometof, V. (2016). Theorizing glocalization: Three interpretations. European Journal of Social Theory, 19(3), 391–408. https://doi.org/10.1177/1368431015605443.

    Article  Google Scholar 

  61. Sadler, T. D. (2009). Socioscientific issues in science education: Labels, reasoning and transfer. Cultural Studies of Science Education, 4, 697–703. https://doi.org/10.1007/s11422-008-9133-x.

    Article  Google Scholar 

  62. Sadler, T. D. (Ed.). (2011). Socio-scientific issues in science classroom: Teaching, learning and research. Dordrecht: Springer.

    Google Scholar 

  63. Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371–391.

    Article  Google Scholar 

  64. Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science Education, 88, 4–27. https://doi.org/10.1002/sce.10101.

    Article  Google Scholar 

  65. Santos, W. L. P. dos, & Mortimer, E. F. (2002). Humanistic science education from Paulo Freire’s ‘Education as the Practice of Freedom’ perspective. In Proceedings of X International Organization for Science and Technology Education (IOSTE) symposium (Vol. 2, pp. 641–649). Foz do Iguaçu, Brazil, 2002.

  66. Simonneaux, L. (2001). Comparison of the impact of a role-play and a conventional debate on pupils’ arguments on an issue in animal transgenesis. In ERIDOB, Saint Jacques de Compostelle: Editions de l’Université de Saint Jacques de Compostelle (pp. 291–312).

  67. Simonneaux, L. (2013). Questions socialement vives and socioscientific issues: New trends of research to meet the training needs of post-modern society. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), 9th ESERA Conference Selected Contributions. Topics and trends in current science education (pp. 37–54). Dordrecht: Springer.

    Google Scholar 

  68. Simonneaux, L., & Cancian, N. (2013). Enseigner pour produire autrement: l’exemple de la réduction des pesticides. Pour, 219, 115–129.

    Article  Google Scholar 

  69. Simonneaux, J., Simonneaux, L. Hervé, N., Nédelec, L., Molinatti, G., Lipp, A., & Cancian, N. (2017 sous presse) Menons l’enquête sur des QSV dans la perspective de l’EDD, Revue des Hautes écoles pédagogiques.

  70. Simonneaux, L., & Lipp, A. (2017). Emotions, values and knowledge in students’ argumentation about farm animal welfare. In A presentation at the semi-annual conference of the European Science Education Research Association, Dublin, Ireland, Aug. 21–25, 2017.

  71. Simonneaux, L., & Pouliot, C. (2017). Editorial introduction: les questions socialement vives (QSV) ou socially acute questions (SAQ). Sisyphus, 5(2), 6–9.

    Google Scholar 

  72. Simonneaux, L., & Simonneaux, J. (2009). Socio-scientific reasoning influenced by identities. Cultural Studies in Science Education, 4, 705–711. https://doi.org/10.1007/s11422-008-9145-6.

    Article  Google Scholar 

  73. Simonneaux, J., & Simonneaux, L. (2012). Educational configurations for teaching environmental socioscientific issues within the perspective of sustainability. Research in Science Education, 42, 75–94. https://doi.org/10.1007/s11165-011-9257-y.

    Article  Google Scholar 

  74. Simonneaux, L., & Simonneaux, J. (2017). STEPWISE as a vehicle for scientific and political educ-action? In L. Bencze (Ed.), Science and technology education promoting wellbeing for individuals, societies and environments (pp. 565–587). Dordrecht: Springer. https://doi.org/10.1007/978-3-319-55505-8_27.

    Google Scholar 

  75. Simonneaux, L., Simonneaux, J., & Chouchane, H. (2015). Traitement des QSV en classe : des débats aux dérangements épistémologiques programmés (pp. 15–32). Dijon: Educagri-Editions.

    Google Scholar 

  76. Sjöström, J., Frerichs, N., Zin, V. G., & Eilks, I. (2017). Use of the concept of Bildung in the international science education literature, its potential, and implications for teaching and learning. Studies in Science Education, 53, 165–192. https://doi.org/10.1080/03057267.2017.1384649.

    Article  Google Scholar 

  77. Solomon, J. (1993). Teaching science, technology and society. Buckingham: Open University Press.

    Google Scholar 

  78. Solomon, J., & Aikenhead, G. S. (Eds.). (1994). STS education: International perspectives on reform. New York: Teachers College Press.

    Google Scholar 

  79. Steele, A. (2014). The seventh current: A case for the environment in STSE education. Canadian Journal of Science, Mathematics and Technology Education, 14, 238–251. https://doi.org/10.1080/14926156.2014.935527.

    Article  Google Scholar 

  80. Vidal, M., & Simonneaux, L. (2011). Using companion modelling on authentic territories in the teaching of biodiversity. In A. Yarden & G. S. Carvalho (Eds.), Authenticity in biology education: Benefits and challenges (pp. 367–378). Braga: CIEC.

    Google Scholar 

  81. Wellington, J. (2001). What is science education for? Canadian Journal of Science, Mathematics and Technology Education, 1, 23–28. https://doi.org/10.1080/14926150109556449.

    Article  Google Scholar 

  82. Wynne, B. (2006). Public engagement as a means of restoring public trust in science: Hitting the notes, but missing the music? Community Genetics, 9, 211–220. https://doi.org/10.1159/000092659.

    Article  Google Scholar 

  83. Yager, R. E. (Ed.). (1996). Science/technology/society as reform in science education. Albany, NY: SUNY Press.

    Google Scholar 

  84. Zanchetta, M. S., Kolawole-Salami, B., Perrault, M., & Leite, L. C. (2012). Scientific and popular health knowledge in the education work of community health agents in Brazilian shantytowns. Health Education Research, 27, 608–623. https://doi.org/10.1093/her/cys072.

    Article  Google Scholar 

  85. Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research and practice. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. II, pp. 697–726)., Routledge NY: New York. https://doi.org/10.4324/9780203097267.ch34.

    Google Scholar 

  86. Zeidler, D. L., Berkowitz, M., & Bennett, K. (2014). Thinking (scientifically) responsibly: The cultivation of character in a global science education community. In M. P. Mueller, D. J. Tippins, & A. J. Steward (Eds.), Assessing schools for generation R (Responsibility): A guide to legislation and school policy in science education (pp. 83–99). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2748-9_7.

    Google Scholar 

  87. Zeidler, D. L., Herman, B. C., Clough, M. P., Olson, J. K., Kahn, S., & Newton, M. (2016). Humanitas Emptor: Reconsidering recent trends and policy in science teacher education. Journal of Science Teacher Education, 25, 465–476. https://doi.org/10.1007/s10972-016-9481-4.

    Article  Google Scholar 

  88. Zeidler, D. L., & Kahn, S. (2014). It’s debatable!: Using socioscientific Issues to develop scientific literacy, K-12. Arlington, VA: National Science Teachers Association Press. https://doi.org/10.2505/9781938946004.

    Book  Google Scholar 

  89. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socio-scientific issues education. Science Education, 89, 357–377. https://doi.org/10.1002/sce.20048.

    Article  Google Scholar 

  90. Ziman, J. (1980). Teaching and learning about science and society. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511896576.

    Book  Google Scholar 

  91. Ziman, J. (1994). The rationale of STS education is in the approach. In J. Solomon & G. Aikenhead (Eds.), STS education: International perspectives on reform (pp. 21–31). New York: Teachers College Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Larry Bencze or Chantal Pouliot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lead Editor: Aik Ling Tan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bencze, L., Pouliot, C., Pedretti, E. et al. SAQ, SSI and STSE education: defending and extending “science-in-context”. Cult Stud of Sci Educ 15, 825–851 (2020). https://doi.org/10.1007/s11422-019-09962-7

Download citation

Keywords

  • SAQ
  • SSI
  • STSE
  • Controversies
  • Science-in-context (SinC)