Student’s social interaction in inquiry-based science education: how experiences of flow can increase motivation and achievement

Original Paper


This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged 13–14 years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on 46 % of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. Implications for science teaching and future research include shifting the current focus in inquiry-based science from a continuum that progresses from teacher-directed to open inquiry experiences to a continuum that also deliberately includes and promotes the necessary criteria for establishing flow. Attending to Flow Theory and incorporating student experiences with flow into inquiry-based science lessons will enhance student motivation and achievement outcomes in science and bolster the success of inquiry-based science.


Inquiry-based science Motivation Academic achievement Flow theory Flow Social interactions Acting like a scientist Teacher directed inquiry Teacher guided inquiry Open inquiry 


  1. Berg, A. R., Bergendahl, C. B., Lundberg, B., & Tibell, L. (2003). Benefiting from an open-ended experiment? A comparison of attitudes to, and outcomes of, an expository versus an open-inquiry version of the same experiment. International Journal of Science Education, 25(3), 351–372. doi:10.1080/09500690210145738.CrossRefGoogle Scholar
  2. Chang, C.-Y., & Song-ling, M. (1999). Comparison of Taiwan science students’ outcomes with inquiry-group versus traditional instruction. Journal of Educational Research, 92(6), 1–12. doi:10.1080/00220679909597617.CrossRefGoogle Scholar
  3. Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. Los Angeles, CA: Sage. doi:10.1177/1363459306067319.Google Scholar
  4. Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York, NY: Harper and Row. doi:10.1007/978-94-017-9088-8_14.Google Scholar
  5. Csikszentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. New York, NY: Harper and Collins. doi:10.1177/001698629704100309.Google Scholar
  6. Csikszentmihalyi, M. (1999). Flow: The psychology of optimal Experience. New York, NY: Harper and Row. doi:10.5860/CHOICE.28-0597.Google Scholar
  7. Cuevas, P., Lee, O., Hart, J., & Deaktor, R. (2005). Improving science inquiry with elementary students of diverse backgrounds. Journal of Research in Science Teaching, 42(3), 337–357. doi:10.1002/tea.20053.CrossRefGoogle Scholar
  8. DeBoer, G. E. (2006). Historical perspectives on inquiry teaching in schools. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education (pp. 17–35). Dordrecht, Netherlands: Springer. doi:10.1007/978-1-4020-5814-1_2.Google Scholar
  9. Emerson, R. M., Fretz, R. I., et al. (1995). Writing ethnographic fieldnotes. Chicago, IL: The University of Chicago Press.CrossRefGoogle Scholar
  10. Engeser, S. (2012). Advances in flow research. New York, NY: Springer. doi:10.1007/978-1-4614-2359-1.CrossRefGoogle Scholar
  11. Fave, A. D., Bassi, M., & Massimini, F. (2010). Quality of experience and risk perception in high-altitude rock climbing. Journal of Applied Sport Psychology, 15(1), 82–98. doi:10.1080/10413200390180080.CrossRefGoogle Scholar
  12. Flick, L. B. (1998). Teaching practices that provide cognitive scaffolding for classroom inquiry. Retrieved from Eric. (ED442640).Google Scholar
  13. Gee, J. P. (2005). An introduction to discourse analysis theory and method. New York, NY: Routledge. doi:10.4324/9781315819679.Google Scholar
  14. Gibson, H. L., & Chase, C. (2002). Longitudinal impacts of an inquiry-based science program on middle school students’ attitudes toward science. Science Education, 86(5), 693–705. doi:10.1002/sce.10039.CrossRefGoogle Scholar
  15. Graesser, A. C., & Person, N. K. (1994). Question asking during tutoring. American Educational Research Journal, 31(1), 104–137. doi:10.3102/00028312031001104.CrossRefGoogle Scholar
  16. Hektner, J., & Asakawa, K. (2000). Learning to like challenges. In M. Csikszentmihalyi & B. Schneider (Eds.), Becoming adult (pp. 95–112). New York, NY: Basic Books.Google Scholar
  17. Lawrence, D. A., & Mancuso, T. A. (2012). Promoting girls’ awareness and interest in engineering. Technology and Engineering Teacher, 72(1), 11–16.Google Scholar
  18. Lerner, R. M., & Israeloff, R. (2007). The good teen: Rescuing adolescence from the myths of the storm and stress years. New York, NY: Crown Publishing Group. doi:10.1007/s10964-010-9504-y.Google Scholar
  19. Lett, J. (1990). Emics and etics: Notes on the epistemology of anthropology. In T. N. Headland, K. L. Pike & M. Harris (Eds.), Emics and etics: The insider/outsider debate. Newbury Park, CA: Sage. doi:10.1177/009182969302100116.Google Scholar
  20. Marx, R. W., Blumenfeld, P. C., Krajcik, J. S., Fishman, B., Soloway, E., Geier, R., & Tal, R. T. (2004). Inquiry-based science in the middle grades: Assessment of learning in urban systemic reform. Journal of Research in Science Teaching, 41(10), 1063–1080. doi:10.1002/tea.20039.CrossRefGoogle Scholar
  21. Nakamura, J. (1988). Optimal experiences and the uses of talent. In Optimal experience: Psychological studies of flow in consciousness (pp. 89–105). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511621956.019.
  22. Schram, T. H. (2006). Conceptualizing and proposing qualitative research. Upper Saddle River, NJ: Pearson Merrill Prentice Hall.Google Scholar
  23. Schunk, D. H., & Zimmerman, B. J. (2008). Motivation and self-regulated learning: Theory, research, and applications. London: Taylor and Francis Group. doi:10.4324/9780203831076.Google Scholar
  24. Schwandt, T. A. (2007). The sage dictionary of qualitative inquiry. New York, NY: Sage. doi:10.4135/9781412986281.CrossRefGoogle Scholar
  25. Schwartz, R., & Lederman, N. (2008). What scientists say: Scientists’ views of nature of science and relation to science context. International Journal of Science Education, 30(6), 727–771. doi:10.1080/09500690701225801.CrossRefGoogle Scholar
  26. Shernoff, D. J., Csikszentmihalyi, M., Schneider, B., Shernoff, E. S., et al. (2003). Student engagement in high school classrooms from the perspective of Flow Theory. School Psychology Quarterly, 18(2), 158–176.CrossRefGoogle Scholar
  27. Soldana, J. (2009). The coding manual for qualitative researchers. London: Sage.Google Scholar
  28. Stake, R. E. (2006). Multiple case study analysis. New York, NY: The Guilford Press.Google Scholar
  29. Talanquer, V., Tomanek, D., & Novodvorsky, I. (2013). Assessing student’s understanding of inquiry: What do prospective science teachers notice? Journal of Research in Science Teaching, 50(2), 189–208. doi:10.1002/tea.21074.CrossRefGoogle Scholar
  30. Tang, X., Coffey, J. E., Elby, A., & Levin, D. M. (2010). The scientific method and scientific inquiry: Tensions in teaching and learning. Science Education, 94(1), 29–47. doi:10.1002/sce.20366.Google Scholar
  31. Taraban, R., Box, C., Myers, R., Pollard, R., & Bowen, C. W. (2007). Effects of active-learning experiences on achievement, attitudes, and behaviors in high school biology. Journal of Research in Science Teaching, 44(7), 960–979. doi:10.1002/tea.20183.CrossRefGoogle Scholar
  32. Whalen, S. P. (1999). Finding flow at school and at home: A conversation with Mihaly Csikszentmihalyi. Journal of ary Gifted Education, 10(4), 161–165.Google Scholar
  33. Wigfield, A., & Eccles, J. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25(1), 68–81. doi:10.1006/ceps.1999.1015.CrossRefGoogle Scholar
  34. Wilson, C., Taylor, J., Kowalski, S. M., & Carlson, J. (2009). The relative effects and equity of inquiry-based and commonplace science teaching on students’ knowledge, reasoning, and argumentation. Journal of Research in Science Teaching, 47(3), 276–301. doi:10.1002/tea.20329.Google Scholar
  35. Wolcott, H. F. (1999). Ethnography: A way of seeing. Walnut Creek, CA: AltaMira.Google Scholar
  36. Wolf, S. J., & Fraser, B. J. (2007). Learning environment, attitudes, and achievement among middle-school science students using inquiry-based laboratory activities. Research in Science Education, 38(3), 321–341. doi:10.1007/s11165-007-9052-y.CrossRefGoogle Scholar
  37. Wong, S. L., & Hodson, D. (2008). From the horse’s mouth: What scientists say about scientific investigation and scientific knowledge. Science Education, 93(1), 109–130. doi:10.1002/sce.20290.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.The University of New HampshireDurhamUSA

Personalised recommendations