Cultural Studies of Science Education

, Volume 12, Issue 3, pp 677–708 | Cite as

Impact of initiatives to implement science inquiry: a comparative study of the Turkish, Israeli, Swedish and Czech science education systems

  • Jana Heinz
  • Margareta Enghag
  • Iva Stuchlikova
  • Gultekin Cakmakci
  • Ran Peleg
  • Ayelet Baram-Tsabari
Original Paper

Abstract

This empirical study investigates factors that influence the implementation of science inquiry in the education systems of Turkey, Israel, Sweden and the Czech Republic. Data was collected by means of recordings of science experts’ discussions as part of an EU-funded project called Science-Teacher Education Advanced Methods (2009–2012). Results of the qualitative analysis reveal that the following general indicators provide insight into the extent of implementation of inquiry-based science education (IBSE): (1) curriculum (2) assessment (3) policy and (4) teacher professionalization systems. In a second step comparative analyses of the four countries’ education systems were conducted with regard to these indicators. To compare these factors we refer to both the framework of neo-institutional theories that explore the emergence of isomorphic educational models and to results from comparative studies emphasizing the influence of the countries’ individual structure and cultural practices on modifying global pressure to convergence. Results show that in each of the countries these indicators influence the implementation of science inquiry to varying degrees. Moreover, as a result of the comparative analyses further country specific factors important for implementing science inquiry were found: (5) the need to improve existing teaching methods, (6) predominant teaching patterns, (7) infrastructure that enables changes in education and (8) education system’s general goals that correlate with reforms.

Keywords

Science inquiry IBSE Implementation Science education 

Özet

Bu deneysel çalışma, Türkiye, İsrail, İsveç ve Çek Cumhuriyetleri eğitim sistemlerindeki bilimsel sorgulama uygulamalarını etkileyen faktörleri araştırmaktadır. Avrupa Birliği tarafından desteklenen Fen Öğretmen Eğitimi İleri Metotlar (2009–2012) isimli proje kapsamında bilim uzmanları tarafından yapılan tartışmalarının ses kayıtları bu çalışmanın verilerini oluşturmaktadır. Nitel analiz sonuçları aşağıdaki genel göstergelerin sorgulamaya dayalı fen eğitiminin (IBSE) hangi ölçüde uygulandığının yapısını ortaya çıkarılmasını sağlamıştır: (1) öğretim programı, (2) değerlendirme, (3) politika ve (4) öğretmen profesyonelleşme sistemleri. Bu göstergeler ışığında bu dört ülkenin eğitim sistemleri ikinci kez karşılaştırmalı analize tabi tutulmuştur. Bu faktörleri karşılaştırmak için hem eşbiçimlik eğitim modellerinin oluşumunu araştıran yeni kurumsalcılık teorilerin çerçevesine ve hem de ülkelerin bireysel yapılarının etkisine vurgu yapan ve küresel baskı ile kültürel pratiklerin yakınlaşmasına yönelik karşılaştırmalı çalışmalara başvurduk. Sonuçlar her bir ülke için bu göstergelerin bilimsel sorgulama uygulamalarını farklı derecelerde etkilediğini göstermiştir. Ayrıca karşılatırmalı analizler sonucunda bilimsel sorgulama uygulamaları için önemli olan başka faktörler de bulunmuştur: (5) mevcut öğretim yöntemlerini geliştirme ihtiyacı, (6) baskın öğretim desenleri, (7) eğitimde değişime olanak sağlayan altyapı ve (8) reformlar ile bağdaş olan eğitimin genel amaçları.

Sammanfattning

Denna empiriska studie undersöker faktorer som påverkar implementering av undervisning med ett undersökande arbetssätt (inquiry based science education, IBSE) inom utbildningssystemen i Turkiet, Israel, Sverige och Tjeckien. Data samlades in med hjälp av inspelningar av experter pånaturvetenskaplig utbildning i diskussioner som en del av en EU-finansierat projekt S-TEAM (Science-Teacher Education Advanced Methods (2009–2012). Resultat från den kvalitativa analysen visar först att följande allmänna indikatorer ger en inblick i omfattningen avgenomförandet av naturvetenskaplig undervisning med ett undersökande arbetssätt(IBSE): (1) läroplan (2) bedömning (3) politik och (4) system för lärares fortbildning. I ett andra steg genomfördes jämförande analyser av de fyra ländernas utbildningssystem med avseende på dessa indikatorer. För att jämföra faktorer, refererar vi dels till ett neo-politiskt ramverk, vilket undersöker förekomsten av isomorfa utbildningsmodeller, och dels till resultat från jämförande studier som uppmärksammar ländernas individuella strukturer och kulturella praktiker för att modifiera det globala trycket mot konvergens. Resultaten visar att indikatorerna påverkar implementering av undervisning med ett undersökande arbetssätt (IBSE) i varierande grad i var och en av länderna. Dessutom, som en följd av de jämförande analyserna, konstaterades ytterligare land-specifika faktorer som är viktiga för genomförandet av undervisning med ett undersökande arbetssätt: (5) behov av att förbättra befintliga undervisningsmetoder, (6) dominerande undervisningsmönster, (7) infrastruktur som möjliggör förändringar i utbildningen och (8) att utbildningssystemets allmänna mål korrelerar med reformer. En reflektion från de svenska nationella samtalsdagarna som datainsamlingen är hämtat ifrån, är att de skolpolitiska förutsättningarna är planerade så långt fram i tiden att de reformer som initieras från ett EU-projekt som S-TEAM har svårt att få genomslag på politisk nivå. Svenska läro-och kursplaner reglerar inte hur undervisning bedrivs men ställer krav på ett centralt innehåll, och har övergripande målsättningar med avseende på värdegrund och skolans uppdrag. Detta ställer stora krav på svenska lärarutbildningsprogram vid universiteten att införa inquiry baserad undervisning för att kunna realisera lärarutbildning- och fortbildning, som ger lärarkompetens att undervisa efter de svenska styrdokumentens intentioner vilka kan realiseras med mer av ett undersökande arbetssätt. Här krävs ett utökat samarbete mellan naturvetenskapsdidaktiker och ämnesinstitutionerna.

Shrnutí

Požadavky na zlepšení přírodovědného a matematického vzdělávání v Evropě vedly ke snahám o nadnárodní aktivity, které by ovlivnily národní vzdělávací praxi. V rámci evropských rámcových projektů byly realizovány diseminační aktivity, které směřovaly k rozšiřování dobré praxe v nadnárodním měřítku. Evropské projekty, které k tomu směřovaly, ukázaly, že širší uplatnění pedagogického konceptu badatelsky orientovaného přírodovědného a matematického vzdělávání (IBSE) nezbytně vyžaduje přijmout podpůrná opatření. Hledání toho, jak mají být tato opatření zaměřena, je předmětem i předkládaného textu. Tato empirická studie zkoumá faktory, které ovlivňují realizaci badatelsky orientovaného vyučování ve výuce přírodovědných předmětů a matematiky v Turecku, Izraeli, Švédsku a v České republice. Data, z nichž studie vychází, byla shromážděna v rámci projektu 7. Rámcového programu EU nazvaného Science-Teacher Education Advanced Methods, řešeného v letech 2009–2012. Pro tuto studii byla použita analýza audiozáznamů diskusí národních expertních panelů, která byla zpracována otevřeným a posléze axiálním nehierarchickým kódováním. Výsledky kvalitativní analýzy ukázaly, že míra uskutečňování badatelsky orientovaného přírodovědného a matematického vyučování (IBSE) v zúčastněných zemích souvisí s následujícími hlavními faktory: (1) kurikulum, (2) hodnocení, (3) vzdělávací politika, (4) systém profesního rozvoje učitelů. Vyšší pravděpodobnost rozsáhlejšího uplatňování IBSE je tam, kde je kurikulum jasně a explicitně zacíleno na badatelsky orientovaný přístup k vyučování a učení. Uplatňování IBSE je dále významně ovlivněno způsoby hodnocení práce žáků, které učitelé používají, což se odvíjí od struktury kurikula a převažujících způsobů výuky v dané zemi. Nezbytné je dále, aby IBSE bylo významně podpořeno vzdělávací politikou – nejen v rovině samotného přírodovědného kurikula, ale i přípravy a profesního rozvoje učitelů. IBSE je závislé i na tom, nakolik je efektivně začleněno do dalšího vzdělávání učitelů. V další části studie byly tyto faktory sledovány ve srovnávací analýze vzdělávacích systémů čtyř zúčastněných zemí. Tato analýza přihlíží jednak k tlakům, které vedou k postupnému sbližování národních vzdělávacích systémů, tak jak jsou popsány v neoinstitucionálních teoriích; jednak k výsledkům srovnávacích studií, které ukazují, že proměny vzdělávacích systémů ve směru uvedené konvergence jsou ovlivněny národně specifickými podobami struktury vzdělávacího systému a kulturně vázaných vzdělávacích tradic. Výsledky ukazují, že v každé ze zúčastněných zemí studované faktory ovlivňují realizaci badatelsky orientovaného přírodovědeckého a matematického vyučování různou měrou. Ze srovnávací analýzy navíc vyplynuly další faktory, které se ukazují jako podstatné pro implementaci badatelského vyučování, jako jsou (5) potřeba zlepšit existující výukové postupy a metody, (6) převažující způsoby výuky v dané zemi, (7) infrastruktura, která umožňuje změny ve vzdělávání, (8) hlavní cíle vzdělávacího systému. Uplatňování IBSE je v dané zemi podpořeno, pokud si klíčoví aktéři přírodovědného vzdělávání uvědomí nutnost změny stávajících výukových metod a podpoří ji. Takové uvědomění je často spojeno s horšími nebo zhoršujícími se národními výsledky v mezinárodních šetřeních výsledků učení žáků. Ochotu začít ve větším rozsahu používat badatelských forem výuky značně ovlivňuje to, nakolik převažující styly výuky v dané zemi obsahují dílčí prvky badatelského přístupu. Významným faktorem je také vybavenost škol pro tento způsob výuky. Důležité je však zejména to, nakolik IBSE odpovídá hlavním cílům národní vzdělávací strategie, pokud tomu tak je, větší zastoupení badatelských forem výuky získává vyšší prioritu.

References

  1. Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., et al. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397–419. doi:10.1002/sce.10118.CrossRefGoogle Scholar
  2. Adbo, K., & Taber, K. S. (2009). Learners’ mental models of the particle nature of matter: A study of 16-year-old Swedish science students. International Journal of Science Education, 31(6), 757–786. doi:10.1080/09500690701799383.CrossRefGoogle Scholar
  3. ALLEA Working Group Science Education. (2012). A renewal of science education in Europe: Views and actions of national academies analysis of surveys conducted in 2010 and 2011. Retrieved August, 08, 2012 from http://www.allea.org/Content/ALLEA/WG%20Science%20Education/ALLEA%20Report_A%20renewal%20of%20science%20education%20in%20europe.pdf.
  4. Barnea, N., Dori, Y. J., & Hofstein, A. (2010). Development and implementation of inquiry-based and computerized-based laboratories: Reforming high school chemistry in Israel. Chemistry Education Research and Practice, 11(3), 218–228. doi:10.1039/C005471M.CrossRefGoogle Scholar
  5. Beach, D., & Dovemark, M. (2011). Twelve years of upper-secondary education in Sweden: The beginnings of a neo-liberal policy hegemony? Educational Review, 63(3), 313–327. doi:10.1080/00131911.2011.560249.CrossRefGoogle Scholar
  6. Bruno, I. (2009). The “indefinite discipline” of competitiveness benchmarking as a neoliberal technology of government. Minerva, 47(3), 261–280. doi:10.1007/s11024-009-9128-0.CrossRefGoogle Scholar
  7. Bybee, R. W. (2010). The teaching of science: 21st century perspectives. Arlington, VA: National Science Teachers Association.Google Scholar
  8. Campbell, T., Zhang, D., & Neilson, D. (2011). Model based inquiry in the high school physics classroom: An exploratory study of implementation and outcomes. Journal of Science Education and Technology, 20(3), 258–269. doi:10.1007/s10956-010-9251-6.CrossRefGoogle Scholar
  9. Casotti, G., Rieser-Danner, L., & Knabb, M. T. (2008). Successful implementation of inquiry-based physiology laboratories in undergraduate major and nonmajor courses. AJP. Advances in Physiology Education, 32(4), 286–296. doi:10.1152/advan.00100.2007.CrossRefGoogle Scholar
  10. Corbin, J., & Strauss, A. (1990). Grounded theory research: Procedures, canons and evaluative criteria. Zeitschrift für Soziologie, 19(6), 418–427.CrossRefGoogle Scholar
  11. Dobbins, M., & Knill, C. (2009). Higher education policies in central and eastern Europe: Convergence toward a common model? Governance: An International Journal of Policy Administration and Institutions, 22(3), 397–430. doi:10.1111/j.1468-0491.2009.01445.x.CrossRefGoogle Scholar
  12. Drori, G. S., & Meyer, J. W. (2006). Scientization: Making a world safe for organizing. In M.-L. Djelic & K. Sahlin-Andersson (Eds.), Transnational governance Institutional dynamics of regulation (pp. 31–52). Cambridge: Cambridge University Press.Google Scholar
  13. Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268–291. doi:10.3102/0091732X07309371.CrossRefGoogle Scholar
  14. Elmore, R. F. (1996). Getting to scale with good educational practice. Harvard Educational Review, 66(1), 1–26.CrossRefGoogle Scholar
  15. Elmore, R. F., & Fuhrman, S. H. (1995). Opportunity-to-learn standards and the state role in education. Teachers College Record, 96(3), 432–457.Google Scholar
  16. Establish. (2011). Report on how IBSE is implemented and assessed in participating countries. Retrieved August, 17, 2012, from http://www.establish-fp7.eu/project/publications.
  17. European Commission. (2007a). Towards more knowledge-based policy and practice in education and training. Luxembourg.Google Scholar
  18. European Commission. (2007b). FP7 in brief: How to get involved in the EU 7th framework programme for research. Luxembourg.Google Scholar
  19. Eurydice. (2011). Science education in Europe: national policies, practices and research. Brussels: Agence exécutive “éducation, audiovisuel et culture.Google Scholar
  20. Fortus, D., Mualem, R., & Nahum, T. L. (2009). Science and technology in the junior high school - the contribution of yesterday to tomorrow: What can be learnt from the “tomorrow 98” programme. Rehovot, Israel: Weizmann Institute of Science.Google Scholar
  21. Fullan, M. (2002, April). The three stories of education reform. Kappan Professional Journal. Retrieved October 08, 2014, from http://www.michaelfullan.ca/articles/#2002.
  22. Fullan, M. (2010). The role of the district in tri level reform. In E. Bake, B. McGaw, & P. Peterson (Eds.), International encyclopedia of education (6th ed., pp. 295–302). Oxford: Elsevier.CrossRefGoogle Scholar
  23. Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Review of Educational Research, 82(3), 300–329. doi:10.3102/0034654312457206.CrossRefGoogle Scholar
  24. Gyllenpalm, J., Wickman, P., & Holmgren, S. (2010). Teachers’ language on scientific inquiry: methods of teaching or methods of inquiry? International Journal of Science Education, 32(9), 1151–1172. doi:10.1080/09500690902977457.CrossRefGoogle Scholar
  25. Heinz, J., Lipowski, K., Gröschner, A., & Seidel, T. (2012). Indicators and instruments in the context of inquiry-based science education. Münster: Waxmann.Google Scholar
  26. Heinze, T., & Knill, C. (2008). Analysing the differential impact of the Bologna process: Theoretical considerations on national conditions for international policy convergence. Higher Education, 56(4), 493–510. doi:10.1007/s10734-007-9107-z.CrossRefGoogle Scholar
  27. Hemmings, P. (2010). Israeli education policy: How to move ahead in reform. OECD economics department working papers, no. 781. Paris: OECD.Google Scholar
  28. Henderson, A. T., & Mapp, K. L. (2002). A new wave of evidence: The impact of school, family, and community connections on student achievement. Austin, TX: Southwest Educational Development Laboratory.Google Scholar
  29. Hiebert, J., & Stigler, J. W. (2000). A proposal for improving classroom teaching: Lessons from the TIMSS video study. The Elementary School Journal, 101(1), 3–20. doi:10.1086/499656.CrossRefGoogle Scholar
  30. Hofstein, A., Eilks, I., & Bybee, R. (2011). Societal issues and their importance for contemporary science education—A pedagogical justification and the state-of-the-art in Israel, Germany, and the USA. International Journal of Science and Mathematics Education, 9(6), 1459–1483. doi:10.1007/s10763-010-9273-9.CrossRefGoogle Scholar
  31. Inter Academics Panel. (2006). Report of the working group on international collaboration in the evaluation of inquiry-based science education (ibse) programs. Retrieved December 20, 2011, from http://www.interacademies.net/File.aspx?id=7078.
  32. International Association for the Evaluation of Educational Achievement (IEA). (2012). TIMSS 2011 encyclopedia: education policy and curriculum in mathematics and science: (Volumes 1 and 2). Retrieved September 12, 2012, from http://timssandpirls.bc.edu/timss2011/downloads/TIMSS2011_Enc-v1.pdf.
  33. Istance, D., Benavides, F., & Dumont, H. (Eds.). (2010). Educational research and innovation. The nature of learning: using research to inspire practice. Paris, s.l: Centre for Educational Research and Innovation. Retrieved September 26, 2012, from http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10421663.
  34. İzci, E., Özden, M., & Tekin, A. (2008). Evaluation of new primary science and technology curriculum: Sample of Adıyaman. Journal of Turkish Science Education, 5(2), 70–81.Google Scholar
  35. Janmaat, J. G., Duru-Bellat, M., Méhaut, P., & Green, A. (Eds.). (2013). Education, economy and society. The dynamics and social outcomes of education systems. Basingstoke: Palgrave Macmillan.Google Scholar
  36. Jorde, D., Olson Moberg, A., Rönnebeck, S., & Stadler, M. (2012). Workpackage 2: Final report. Norway: Oslo.Google Scholar
  37. Karseth, B., & Solbrekke, T. D. (2010). Qualifications frameworks: The avenue towards the convergence of European higher education? European Journal of Education, 45(4), 563–576. doi:10.1111/j.1465-3435.2010.01449.x.CrossRefGoogle Scholar
  38. Kearney, C. (2012). Efforts to increase students’ interest in pursuing science, technology, engineering and mathematics studies and careers: National measures taken by 21 of European schoolnet’s member countries2011 report. Brussels, Belgium: European Schoolnet (EUN Partnership AISBL).Google Scholar
  39. Klieger, A., & Yakobovitch, A. (2011). Perception of science standards’ effectiveness and their implementation by science teachers. Journal of Science Education and Technology, 20(3), 286–299. doi:10.1007/s10956-010-9253-4.CrossRefGoogle Scholar
  40. Koc, Y., Isildak, M., & Bulut, S. (2007). Elementary school curriculum reform in Turkey. International Education Journal, 8(1), 30–39.Google Scholar
  41. Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners’ understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51(1), 65–83. doi:10.1002/tea.21125.CrossRefGoogle Scholar
  42. Levin, B. (2008). How to change 5000 schools: A practical and positive approach for leading change at every level. Cambridge, MA: Harvard Education Press.Google Scholar
  43. Linn, M. C., Davis, E. A., & Bell, P. J. (2004). Inquiry and Technology. In M. C. Linn, E. A. Davis, & P. J. Bell (Eds.), Internet environments for science education (pp. 3–27). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  44. Mamlok-Naaman, R. (2007). “Science and technology for all”—An Israeli curriculum based on new standards in science education. In D. Waddington (Ed.), Standards in science education. Making it comparable (pp. 199–220). Münster: Waxmann.Google Scholar
  45. Martin, M. O. (2008). TIMSS 2007: International science report: findings from IEA’s trends in international mathematics and science study at the fourth and eighth grades. Boston, MA: IEA TIMSS & PIRLS.Google Scholar
  46. MEB (Turkish Ministry of National Education), (2005). Science and technology curriculum (6-8 grades). Ankara: Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı. Retrieved July 27, 2015, from http://ttkb.meb.gov.tr/program2.aspx.
  47. MEB (Turkish Ministry of National Education). (2013). Science curriculum (38 grades). Ankara: Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı. Retrieved July 27, 2015, from http://ttkb.meb.gov.tr/www/guncellenen-ogretim-programlari/icerik/151.
  48. Meyer, J. W. (2008). Reflections on institutional theories of organizations. In R. Greenwood (Ed.), The SAGE handbook of organizational institutionalism (pp. 790–813). Los Angeles, London: SAGE.CrossRefGoogle Scholar
  49. Ministry of Education Culture and Sport. (1992). Tomorrow 98: report of the superior committee on science, mathematics and technology education in Israel. [Haim Harrari, chairman]. Jerusalem: Publications Department.Google Scholar
  50. Ministry of Education and Research. (2009). Uppdrag till Statens skolverk att genomföra utvecklingsinsatser inom matematik, naturvetenskap och teknik Regeringsbeslut 1:2 2009-02-19 U2009/914/GU2008/6186/G. Stockholm: Utbildningsdepartementet [Assignment to the National Agency to carry out development activities Mathematics, Science and Technology Government Decision]. Stockholm: Ministry of Education.Google Scholar
  51. Mullis, I. V., Martin, M. O., Minnich, C. A., Stanco, G. M., & Arora, A. (Eds.). (2012). TIMSS 2011 encyclopedia: Education policy and curriculum in mathematics and science (Volumes 1 and 2). Lynch School of Education, Boston College: TIMSS & PIRLS International Study Center.Google Scholar
  52. National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.Google Scholar
  53. Odabasi-Cimer, S., & Cimer, A. (2012). Issues around incorporating reflection in teacher education in Turkey. Journal of Turkish Science Education, 9(1), 17–33.Google Scholar
  54. OECD. (2007). Programme for international student assessment (PISA) 2006: Science competencies for tomorrow’s world. Paris: OECD.Google Scholar
  55. OECD. (2011). PISA 2009 results: What students know and can do: student performance in reading, mathematics and science (Vol. I). Paris: OECD.Google Scholar
  56. OECD. (2012a). Education at a glance 2012: OECD indicators. Paris: OECD.Google Scholar
  57. OECD. (2012b). Science, technology and industry outlook 2012. Paris: OECD.CrossRefGoogle Scholar
  58. OECD. (2012c). The experience of new teachers. Paris: OECD.Google Scholar
  59. OECD. (2014). PISA 2012 results in focus: What 15-year-olds know and what they can do with what they know. Paris: OECD.Google Scholar
  60. Orton, J. D., & Weick, K. E. (1990). Loosely coupled systems: A reconceptualization. The Academy of Management Review, 15(2), 203–223. doi:10.2307/258154.Google Scholar
  61. Ostermeier, C., Prenzel, M., & Duit, R. (2010). Improving science and mathematics instruction: The SINUS project as an example for reform as teacher professional development. International Journal of Science Education, 32(3), 303–327. doi:10.1080/09500690802535942.CrossRefGoogle Scholar
  62. Ottander, C., & Ekborg, M. (2012). Students’ experience of working with socioscientific issues—A quantitative study in secondary school. Research in Science Education, 42(6), 1147–1163. doi:10.1007/s11165-011-9238-1.CrossRefGoogle Scholar
  63. Powell, W. W., & DiMaggio, P. (1991). The new institutionalism in organizational analysis. Chicago: University of Chicago Press.Google Scholar
  64. Powell, J. J. W., & Solga, H. (2010). Analyzing the nexus of higher education and vocational training in Europe: A comparative-institutional framework. Studies in Higher Education, 35(6), 705–721. doi:10.1080/03075070903295829.CrossRefGoogle Scholar
  65. Roth, K. J., Druker, S. L., Garnier, H. E., Lemmens, M., Chen, C., Kawanaka, T., et al. (2006). Highlights from the TIMSS 1999 video study of eighth-grade science teaching (NCES 200617). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.Google Scholar
  66. Roth, K., & Garnier, H. (2006). What science teaching looks like: An international perspective. Science in the Spotlight, 64(4), 16–23.Google Scholar
  67. Sadeh, I., & Zion, M. (2012). Which type of inquiry project do high school biology students prefer: Open or guided? Research in Science Education, 42(5), 831–848. doi:10.1007/s11165-011-9222-9.CrossRefGoogle Scholar
  68. Santiago, P., Gilmore, A., & Nusche, D. (2012). OECD reviews of evaluation and assessment in education. Paris: OECD.Google Scholar
  69. Seidel, T., Prenzel, M., Wittwer, J., & Schwindt, K. (2007). Unterricht in den Naturwissenschaften. In M. Prenzel (Ed.), PISA 2006. Die Ergebnisse der dritten internationalen Vergleichsstudie (pp. 147–179). Münster, München [u.a.]: Waxmann.Google Scholar
  70. Şengül, S. H., Çetin, G., & Gür, H. (2008). The primary school science teachers’ problems in science teaching. Journal of Turkish Science Education, 5(3), 82–88.Google Scholar
  71. Sezgin, A. R. (2001). Turkey’s basic education programme: PEB exchange, programme on educational building, No. 2000/03. Paris: OECD. doi: 10.1787/862402283047.
  72. Shavit, Y., & Blank, C. (2012). School discipline and achievement in Israel. In R. Arum & M. Velez (Eds.), Studies in social inequality. Improving learning environments. School discipline and student achievement in comparative perspective (pp. 104–136). Stanford, CA: Stanford Univ. Press.Google Scholar
  73. Skans, N. O. (2007). School to work transition in Sweden: the japan institute for labor policy training report no. 5. Transition support policy for young people with low educational background. Tokyo: The Japan Institute for Labour Policy and Training.Google Scholar
  74. S-TEAM (Science Teacher Education Advanced Methods). (2009). Science-teacher education advanced methods: the s-team project. Annex 1. Retrieved June 06, 2011, from https://www.ntnu.no/wiki/download/attachments/7242619/STAN84.pdf?version=1&modificationDate=1243437674000.
  75. Sundberg, D., & Wahlström, N. (2012). Standards-based curricula in a denationalised conception of education: The case of Sweden. European Educational Research Journal, 11(3), 342–356. doi:10.2304/eerj.2012.11.3.342.CrossRefGoogle Scholar
  76. Swedish National Agency for Education. (2012). Facts and figures 2011: pre-school activities, school-age childcare, schools and adult education in Sweden. Retrieved May 7, 2015, from http://www.skolverket.se/publikationer?id=2768.
  77. Taitelbaum, D., Mamlok-Naaman, R., Carmeli, M., & Hofstein, A. (2008). Evidence for teachers’ change while participating in a continuous professional development programme and implementing the inquiry approach in the chemistry laboratory. International Journal of Science Education, 30(5), 593–617. doi:10.1080/09500690701854840.CrossRefGoogle Scholar
  78. Volansky, A. (2007). School autonomy for school effectiveness and improvement: The case of Israel. In T. Townsend (Ed.), Springer international handbooks of education: Vol. 17. International handbook of school effectiveness and improvement. Part one (pp. 351–362). Dordrecht: Springer.Google Scholar
  79. Wiborg, S. (2013). Neo-liberalism and universal state education: The cases of Denmark, Norway and Sweden 1980–2011. Comparative Education, 49(4), 407–423. doi:10.1080/03050068.2012.700436.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jana Heinz
    • 1
  • Margareta Enghag
    • 2
  • Iva Stuchlikova
    • 3
  • Gultekin Cakmakci
    • 4
  • Ran Peleg
    • 5
  • Ayelet Baram-Tsabari
    • 6
  1. 1.TUM School of EducationTechnische Universität MünchenMunichGermany
  2. 2.Department of Mathematics and Science EducationStockholmSweden
  3. 3.Department of Pedagogy and Psychology, Faculty of EducationUniversity of South BohemiaCeske BudejoviceCzech Republic
  4. 4.Department of Science Education, Faculty of EducationHacettepe UniversityAnkaraTurkey
  5. 5.Faculty of EducationUniversity of HaifaHaifaIsrael
  6. 6.Department of Education in Science and TechnologyTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations