Abstract
Conceptual change views of teaching and learning processes in science, and also in various other content domains, have played a significant role in research on teaching and learning as well as in instructional design since the late 1970s. An important issue is whether conceptual change can provide a powerful framework for improving instructional practice in such a way that students’ levels of scientific literacy are significantly increased. In this article, the first section provides an overview on the development of conceptual change perspectives. In sections two to six, we examine the different ways that researchers have facilitated the collection of data and empirically evaluated learning as conceptual change based on these different theoretical perspectives. In section seven, we identify key issues of conceptual change with a deliberate emphasis on their contribution to improve instructional practice and conclude the article by posing challenges at theoretical, methodological and practical levels. We contend that conceptual change perspectives still have the potential to significantly improve instructional practice. However, it becomes also evident that actual practice is far from what conceptual change perspectives propose and that change of this practice will be a rather difficult and long-lasting process.
This is a preview of subscription content, access via your institution.



References
Abraham, M. R. (1998). The learning cycle approach as a strategy for instruction in science. In: B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 513–524). Dordrecht, The Netherlands: Kluwer.
Anderson C. W. (2007). Perspectives on science learning. In S. Abell & N. Ledermann (Eds.), Handbook of research on science education (pp. 3–30). Mahwah. NJ: Erlbaum.
Anderson, R. D., & Helms, J. V. (2001). The ideal of standards and the reality of schools: needed research. Journal of Research in Science Teaching, 38, 3–16.
Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart and Winston.
Bachelard, G. (1968). The philosophy of No. A philosophy of the new scientific mind. New York: The Orion Press.
Baumert, J., & Köller, O. (2000). Unterrichtsgestaltung, verständnisvolles Lernen und multiple Zielerreichung im Mathematik- und Physikunterricht der gymnasialen Oberstufe [Instructional design, learning and achievement of multiple goals in mathematics, science upper secondary instruction]. In J. Baumert, W. Bos, & R. Lehmann (Eds.), TIMSS/III. Dritte Internationale Mathematik- und Naturwissenschaftsstudie. (Vol. 2., pp. 271–315). Opladen, Germany: Leske + Budrich.
Beeth, M., Duit, R., Prenzel, M., Ostermeier, C., Tytler, R., & Wickman, P. O. (2003). Quality development projects in science education. In D. Psillos, P. Kariotoglou, V. Tselfes, G. Fassoulopoulos, E. Hatzikraniotis, & M. Kallery (Eds.), Science education research in the knowledge based society (pp. 447–457). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Bereiter C., & Scardamalier, M. (1989). Intentional learning as a goal of instruction. In L. B. Resnick (Ed.), Knowing, learning and instruction: Essays in honor of Robert Glaser (pp. 361–392). Hillsdale, NJ: Erlbaum.
Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33, 3–15.
Bryce, T., & MacMillan, K. (2005). Encouraging conceptual change: the use of bridging analogies in the teaching of action-reaction forces and the ‘at rest’ condition in physics. International Journal of Science Education, 27, 737–763.
Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: A Bradford Book. The MIT Press.
Carr, M. (1996). Interviews about instances and interviews about events. In D. F. Treagust, R. Duit, & B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics (pp. 44–53). New York: Teachers College Press.
Chan, C., Burtis, J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, 15(1), 1–40.
Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27–43.
Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science education. Review of Educational Research, 63, 1–49.
Chiu, M.-H., Chou, C.-C., & Liu, C.-J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39, 713–737.
Concord Consortium (2001, October). BioLogica., from http://biologica.concord.org.
De Boer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37, 582–601.
Driver, R., & Easley, J. A. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61–84.
Driver, R., & Erickson, G. L. (1983). Theories-in-action: Some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education, 10, 37–60.
Duit, R. (1995). Constraints on knowledge acquisition and conceptual change: The case of physics. Paper presented at the 6th European Conference for Research on Learning and Instruction, Nijmegen, The Netherlands.
Duit, R. (1998, April). Towards multi-perspective views of science learning and instruction. Paper presented at the annual meeting of the American Educational Research Association in San Diego.
Duit, R. (2007). STCSE—Bibliography: Students’ and teachers’ conceptions and science education. Kiel, Germany: IPN—Leibniz Institute for Science Education (http://www.ipn.uni-kiel.de/aktuell/stcse/stcse.html).
Duit, R., Widodo A., & Wodzinski, C. T. (2007). Conceptual change ideas—Teachers’ views and their instructional practice. In S. Vosniadou, A. Baltas, & X. Vamvokoussi (Eds.), Re-framing the problem of conceptual change in learning and instruction (pp. 197–217). Advances in Learning and Instruction Series. Amsterdam, The Netherlands: Elsevier.
Duit, R., & Treagust, D. F. (1998). Learning in science—From behaviourism towards social constructivism, beyond. In B. J. Fraser & K. Tobin (Eds.), International handbook of Science Education, Part 1 (pp. 3–25). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Duit, R., & Treagust, D. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671–688.
Duit, R., Treagust, D. F., & Widodo, A. (2008). Teaching science for conceptual change: Theory and practice. In S. Vosniadou et al. (Eds.), Handbook on conceptual change (pp. 629–646). Mahwah, NJ: Lawrence Erlbaum.
Duschl, R. A., & Gitomer, D. H. (1991). Epistemological perspectives of conceptual change: The case of physics. Journal of Research in Science Teaching, 28, 839–858.
Dykstra, D. I., Boyle, C. F., & Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education, 76, 615–652.
Glynn, S. M, & Duit, R. (1995). Learning science meaningfully: Constructing cenceptual models. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 3–33). New Jersey: Lawrence Erlbaum Associates.
Grayson, D. J. (1996). Concept substitution: A strategy for promoting conceptual change. In D. F. Treagust, R. Duit, & B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics (pp. 152–161). New York: Teachers College Press.
Greeno, J. G., Collins, A. M., & Resnick, L. B. (1997). Cognition and learning. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 15–46). New York: Simon & Schuster Macmillan.
Guzetti, B. J., Snyder, T. E., Glass, G. V., & Gamas, W. S. (1993). Promoting conceptual change in science: A comparative meta-analysis of instructional interventions from reading education and science education. Reading Research Quarterly, 28, 116–159.
Harlen, W. (1999). Effective teaching of science: A review of research. Edinburgh, UK: The Scottish Council for Research in Education.
Harrison, A. G., & Treagust, D. F. (1993). Teaching with analogies: A case study in grade 10 optics. Journal of Research in Science Teaching, 30, 1291–1307.
Hashweh, M. Z. (1986). Toward an explanation of conceptual change. European Journal of Science Education, 8, 229–249.
Hennessy, S. (1993). Situated cognition and cognitive apprenticeship: Implications for classroom learning. Studies in Science Education, 22, 1–41.
Hewson, P. W. (1982). A case study of conceptual change in special relativity: The influence of prior knowledge in learning. European Journal of Science Education, 4, 61–78.
Hewson, P., & Hennessey, M. G. (1992). Making status explicit: A case study of conceptual change. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 176–187). Proceedings of an international workshop. Kiel, Germany: IPN—Institute for Science Education.
Hewson, P. W., & Hewson, M. G. A’B. (1992). The status of students’ conceptions. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 59–73). Proceedings of an international workshop. Kiel, Germany: IPN—Institute for Science Education.
Hewson, P. W., & Lemberger, J. (2000). Status as the hallmark of conceptual change. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education (pp. 110–125). Buckingham, UK: Open University Press.
Hewson, P. W., Tabachnick, B. R., Zeichner, K. M., Blomker, K. B., Meyer, H., Lemberger, J., Marion, R., Park, H.-J., & Toolin, R. (1999). Educating prospective teachers of biology: Introduction and research methods. Science Education, 83, 247–273.
Hewson, P. W., & Thorley, N. R. (1989). The conditions of conceptual change in the classroom. International Journal of Science Education, 11, 541–553.
Jung, W. (1993). Hilft die Entwicklungspsychologie dem Physikdidaktiker [Does developmental psychology help the physics educator?]. In R. Duit & W. Gräber (Eds.), Kognitive Entwicklung und naturwissenschaftlicher Unterricht (pp. 86–107). Kiel, Germany: IPN−Institute for Science Education.
Limon, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: a critical appraisal. Learning and Instruction, 11, 357–380.
Mason, L. (2001). Responses to anomalous data on controversial topics and theory change. Learning and Instruction, 11, 453–484.
Mortimer, E. F. (1995). Conceptual change or conceptual profile change? Science & Education, 4, 267–285.
Müller, C. T. (2004). Subjektive Theorien und handlungsleitende Kognitionen von Lehrern als Determinanten schulischer Lehr-Lern-Prozesse im Physikunterricht [Teachers’ subjective theories and cognitions and teaching and learning processes in physics instruction]. Studien zum Physikunterricht, Band 33. Berlin, Germany: Logos.
Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7–14). Hillsdale, NJ: Lawrence Erlbaum.
Nussbaum, J. (1989). Classroom conceptual change: Philosophical perspectives. International Journal of Science Education, 11, 530–540.
OECD-PISA (1999). Measuring student knowledge and skills: A new framework for assessment. Paris: OECD.
Oser, F. K., & Baeriswyl, F. J. (2001). Choreographies of teaching: Bridging instruction to learning. In V. Richardson (Ed.), AERA’s handbook of research on teaching (4th ed., pp. 1031–1065). Washington DC: American Educational Research Association.
Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 6, 167–199.
Piquette, J. S., & Heikkinen, H. W. (2005). Strategies reported used by instructors to address student alternate conceptions in chemical equilibrium. Journal of Research in Science Teaching, 42, 1112–1134.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227.
Reyer, T. (2004). Oberflächenmerkmale und Tiefenstrukturen im Unterricht. Exemplarische Analysen im Physikunterricht der gymnasialen Sekundarstufe [Surface structures and deep structures in instruction: Exemplary analysis of lower secondary physics instruction]. Berlin, Germany: Logos.
Salomon, G., & Globerson, T. (1987). Skill may not be enough: the role of mindfulness in learning and transfer. International Journal of Educational Research, 11, 623–637.
Scott, P. H., Asoko, H. M. , & Leach, J. (2007). Student conceptions and conceptual change learning in science. In S. Abell & N. Ledermann (Eds.), Handbook of research on science education (pp. 31–56). Mahwah, NJ: Erlbaum.
Seiler, T.B. (1973). Die Bereichsspezifizität formaler Denkstrukturen - Konsequenzen für den pädagogischen Prozess [The domain-specific nature of formal thinking patterns - consequences for the pedagogical process]. In K. Frey & M. Lang (Eds.), Kognitionspsychologie und naturwissenschaftlicher Unterricht (pp. 249–283). Bern, Switzerland: Huber.
Sinatra, G. M., & Pintrich P. R. (Eds.). (2003). Intentional conceptual change. Mahwah, NJ: Lawrence Erlbaum.
Solomon, J. (1987). Social influences on the construction of pupils’ understanding of science. Studies in Science Education, 14, 63–82.
Solsona, N., Izquierdo, M., & de Jong, O. (2003). Exploring the development of students’ conceptual profiles of chemical change. International Journal of Science Education, 25, 3–12.
Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding. In L. West & L. Pines (Eds.), Cognitive structure and conceptual change (pp. 211–231). Orlando. FL.: Academic Press.
Thagard, P. (1991). Concepts and conceptual change. In J. H. Fetzer (Ed.), Epistemology and cognition (pp. 101–120). Dordrecht: Kluwer.
Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
Thorley, N. R. (1990). The role of the conceptual change model in the interpretation of classroom interactions. Unpublished doctoral dissertation, University of Wisconsin-Madison, Wisconsin, USA.
Treagust, D. F., Venville, G. J., Harrison, A. G., & Tyson, L (1997, March). Diagnosing changes in conceptual status based on transcripts of students’ interviews. Paper presented at the annual meeting of the American Educational Research Association (AERA), Chicago.
Tsui,C.-Y., & Treagust, D. F. (2004, April). Learning genetics with multiple representations: cross-case analyses of students’ conceptual status. Paper presented at the annual meeting of the National Association for Research in Science Teaching (NARST), Vancouver, Canada.
Tsui, C.-Y., & Treagust, D. F. (2007). Understanding genetics: Analysis of secondary students’ conceptual status. Journal of Research in Science Teaching, 44, 205–235.
Toulmin, S. (1972). Human understanding, Vol. 1. Oxford, UK: Oxford University Press.
Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change in the classroom. Science Education, 81, 387–404.
van der Veer, R., & Valsiner, J. (1991). Understanding Vygotsky: A quest for synthesis. Oxford, UK: Blackwell.
Venville, G., Gribble, S. J., & Donovan, J. (2005). An exploration of young children’s understandings of genetics concepts from ontological and epistemological perspectives. Science Education, 89, 614–633.
Venville, G. J., & Treagust, D. F. (1996). The role of analogies in promoting conceptual change in biology. Instructional Science, 24, 295–320.
Venville, G. J, & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35, 1031–1055.
Villani, A. (1992). Conceptual change in science and science education. Science Education, 76, 223–237.
Vosniadou, S. (1994). Capturing and modelling the process of conceptual change. Learning and Instruction, 4, 45–69.
Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: a study of conceptual change in childhood. Cognitive Psychology, 24, 535–585.
Vosniadou, S., & Ioannides, C. (1998). From conceptual change to science education: a psychological point of view. International Journal of Science Education, 20, 1213–1230.
Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 177–210). New York: Macmillan.
West, L. H. T, & Pines A. L. (Eds.). (1985). Cognitive structure and conceptual change. Orlando FL: Academic Press.
West, L., & Staub, F. C. (2003). Content-focused coaching: Transforming mathematics lessons. Portsmouth, NH: Heinemann/Pittsburgh, PA: University of Pittsburgh.
Zembylas, M. (2005). Three perspectives on linking the cognitive and the emotional in science learning: Conceptual change, socio-constructivism and poststructuralism. Studies in Science Education, 41, 91–116.
Author information
Authors and Affiliations
Corresponding author
Additional information
The present paper draws on a chapter of a handbook on conceptual change (Duit et al. 2008). The initial text was substantially revised and enlarged in order to fit the emphasis of the present paper.
Rights and permissions
About this article
Cite this article
Treagust, D.F., Duit, R. Conceptual change: a discussion of theoretical, methodological and practical challenges for science education. Cult Stud of Sci Educ 3, 297–328 (2008). https://doi.org/10.1007/s11422-008-9090-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11422-008-9090-4
Keywords
- Conceptual change
- Science education
- Epistemology
- Ontology
- Affective domain