History of Spinal Fusion: Where We Came from and Where We Are Going


Spinal fusion surgery is performed all over the world to help patients with cervical and thoracolumbar pathology. As outcomes continue to improve in patients with spine-related pathology, it is important to understand how we got to modern day spinal fusion surgery. Scientific innovations have ranged from the first spinal fusions performed with basic instrumentation in the late nineteenth century to contemporary tools such as pedicle screws, bone grafts, and interbody devices. This article tracks this technological growth so that surgeons may better serve their patients in treating spine-related pain and disability.

This is a preview of subscription content, log in to check access.


  1. 1.

    Aaro S, Dahlborn M. The effect of Harrington instrumentation on the longitudinal axis rotation of the apical vertebra and on the spinal and rib-cage deformity in idiopathic scoliosis studied by computer tomography. Spine (Phila Pa 1976). 1982;7:456–462.

    CAS  Article  Google Scholar 

  2. 2.

    Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329:300–309.

    Article  Google Scholar 

  3. 3.

    Bae HW, Zhao L, Kanim LE, Wong P, Delamarter RB, Dawson EG. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine (Phila Pa 1976). 2006;31:1299–1306.

    Article  Google Scholar 

  4. 4.

    Bagby GW, inventor. Process for fusing bone joints. US Patent 4,501,269 A; February 26, 1985.

  5. 5.

    Barbier DD, Caspar W, Klara PM. Anterior cervical fusion and caspar plate stabilization for cervical trauma. Neurosurgery. 1989;25:491–502.

    PubMed  Article  Google Scholar 

  6. 6.

    Boni M, Cherubino P, Denaro V, Benazzo F. Multiple subtotal somatectomy. Technique and evaluation of a series of 39 cases. Spine (Phila Pa 1976). 1984;9:358–362.

    CAS  Article  Google Scholar 

  7. 7.

    Boucher HH. A method of spinal fusion. J Bone Joint Surg Br. 1959;41-b:248–259.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Bouyer M, Guillot R, Lavaud J, et al. Surface delivery of tunable doses of BMP-2 from an adaptable polymeric scaffold induces volumetric bone regeneration. Biomaterials. 2016;104:168–181.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Briggs H, Milligan P. Chip fusion of the low back following exploration of the spinal canal. J Bone Joint Surg Am. 1944;26:125–130.

    Google Scholar 

  10. 10.

    Brown MD, Malinin TI, Davis PB. A roentgenographic evaluation of frozen allografts versus autografts in anterior cervical spine fusions. Clin Orthop Relat Res. 1976:231–236.

  11. 11.

    Buck AH, ed. A Reference Handbook to the Medical Sciences, Embracing the Entire Range of Scientific and Practical Medicine and Allied Science. Vol VIII. New York: William Wood & Co., 1894.

    Google Scholar 

  12. 12.

    Buell TJ, Bess S, Xu M, et al. Optimal tether configurations and preload tensioning to prevent proximal junctional kyphosis: a finite element analysis. J Neurosurg Spine. 2019:1–11. https://doi.org/10.3171/2018.10.SPINE18429

    Google Scholar 

  13. 13.

    Burns BJ. An operation for spondylolisthesis. Lancet. 1933;221:1233.

    Article  Google Scholar 

  14. 14.

    Cao L, Duan P-G, Li X-L, et al. Biomechanical stability of a bioabsorbable self-retaining polylactic acid/nano-sized β-tricalcium phosphate cervical spine interbody fusion device in single-level anterior cervical discectomy and fusion sheep models. Int J Nanomedicine. 2012;7:5875–5880.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Capener N. Spondylolisthesis. Br J Surg. 1932;19:374–386.

    Article  Google Scholar 

  16. 16.

    Carragee EJ, Baker RM, Benzel EC, et al. A biologic without guidelines: the YODA project and the future of bone morphogenetic protein-2 research. Spine J. 2012;12:877–880.

    PubMed  Article  Google Scholar 

  17. 17.

    Castro FP Jr, Holt RT, Majd M, Whitecloud TS 3rd. A cost analysis of two anterior cervical fusion procedures. J Spine Disord. 2000;13:511–514.

    Article  Google Scholar 

  18. 18.

    Chen Y, Lu G, Wang B, Li L, Kuang L. A comparison of anterior cervical discectomy and fusion (ACDF) using self-locking stand-alone polyetheretherketone (PEEK) cage with ACDF using cage and plate in the treatment of three-level cervical degenerative spondylopathy: a retrospective study with 2-year follow-up. Euro Spine J. 2016;25:2255–2262.

    Article  Google Scholar 

  19. 19.

    Chubb G. Demonstration of cases and radiographs illustrating the technique employed and results obtained in the repair of fractured mandible by means of the free autogenous bone-graft. Proc R Soc Med. 1921;14(Surg Sect):81–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Clark CR, Goetz DD, Menezes AH. Arthrodesis of the cervical spine in rheumatoid arthritis. J Bone Joint Surg Am. 1989;71:381–392.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg. 1953;10:154–168.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Cloward RB. The anterior approach for removal of ruptured cervical disks. J Neurosurg. 1958;15(6):602–617.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Cregan JC. Internal fixation of the unstable rheumatoid cervical spine. Ann Rheum Dis. 1966;25:242–252.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Cuenca-Lopez MD, Andrades JA, Gomez S, et al. Evaluation of posterolateral lumbar fusion in sheep using mineral scaffolds seeded with cultured bone marrow cells. Int J Mol Sci. 2014;15:23359–23376.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    de Kunder SL, Rijkers K, Caelers I, de Bie RA, Koehler PJ, van Santbrink H. Lumbar interbody fusion: a historical overview and a future perspective. Spine. 2018;43:1161–1168.

    PubMed  Article  Google Scholar 

  26. 26.

    De Leonardis D, Garg AK, Pecora GE. Osseointegration of rough acid-etched titanium implants: 5-year follow-up of 100 minimatic implants. Int J Oral Maxillofac Implants. 1999;14(3):384–391.

    PubMed  Google Scholar 

  27. 27.

    Denaro V, Di Martino A. Cervical spine surgery: an historical perspective. Clin Orthop Relat Res. 2011;469:639–648.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Donaldson JA. The use of gold in dentistry. Gold Bulletin. 1980;13:117–124.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Ehrler DM, Vaccaro AR. The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res. 2000;371:38–45.

    Article  Google Scholar 

  30. 30.

    Einhorn TA, Lane JM, Burstein AH, Kopman CR, Vigorita VJ. The healing of segmental bone defects induced by demineralized bone matrix. A radiographic and biomechanical study. J Bone Joint Surg Am. 1984;66:274–279.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Elder BD, Lo SF, Holmes C, et al. The biomechanics of pedicle screw augmentation with cement. Spine J. 2015;15:1432–1445.

    PubMed  Article  Google Scholar 

  32. 32.

    Erwin WD, Dickson JH, Harrington PR. Clinical review of patients with broken Harrington rods. J Bone Joint Surg Am. 1980;62:1302–1307.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Fastlicht S. Tooth mutilations and dentistry in pre-Columbian Mexico. Berlin: Quintessenz Verlags-GmbH; 1976.

    Google Scholar 

  34. 34.

    Fogel GR, Reitman CA, Liu W, Esses SI. Physical characteristics of polyaxial-headed pedicle screws and biomechanical comparison of load with their failure. Spine (Phila Pa 1976). 2003;28:470–473.

    Google Scholar 

  35. 35.

    Fu TS, Chang YH, Wong CB, et al. Mesenchymal stem cells expressing baculovirus-engineered BMP-2 and VEGF enhance posterolateral spine fusion in a rabbit model. Spine J. 2015;15:2036–2044.

    PubMed  Article  Google Scholar 

  36. 36.

    Gittens RA, Olivares-Navarrete R, McLachlan T, et al. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium–aluminum–vanadium alloy surfaces. Biomaterials. 2012;33:8986–8994.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Guiroy A, Sícoli A, Masanés NG, Ciancio AM, Gagliardi M, Falavigna A. How to perform the Wiltse posterolateral spinal approach: technical note. Surg Neurol Int. 2018;9:38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Hadra BE. Wiring of the vertebrae as a means of immobilization in fracture and Potts’ disease. 1891. Clin Orthop Relat Res. 2007;460:11–13.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Harms JG. The unilateral, transforaminal approach for posterior lumbar interbody fusion. Oper Orthop Traumatol. 1998;10:90–102.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Harrington PR, Dickson JH. Spinal instrumentation in the treatment of severe progressive spondylolisthesis. Clin Orthop Relat Res. 1976:157–163.

  41. 41.

    Hasler CC. A brief overview of 100 years of history of surgical treatment for adolescent idiopathic scoliosis. J Child Orthop. 2013;7(1):57–62.

    PubMed  Article  Google Scholar 

  42. 42.

    Hibbs RA. An operation for progressive spinal deformities: a preliminary report of three cases from the service of the orthopaedic hospital. 1911. Clin Orthop Relat Res. 2007;460:17–20.

    PubMed  Article  Google Scholar 

  43. 43.

    Hsu WK, Wang JC. Demineralized bone matrix for spinal arthrodesis. Semin Spine Surg. 2006;18:22–25.

    Article  Google Scholar 

  44. 44.

    Hsu W, Weiner J, Chun D, et al. Peptide amphiphile nanogel as an improved BMP-2 carrier for spinal arthrodesis. Global Spine J. 2016;6(1_suppl):s-0036.

    Google Scholar 

  45. 45.

    Kabins MB, Weinstein JN. The history of vertebral screw and pedicle screw fixation. Iowa Orthop J. 1991;11:127–136.

    PubMed Central  Google Scholar 

  46. 46.

    Kapetanakis S, Thomaidis T, Charitoudis G, Pavlidis P, Theodosiadis P, Gkasdaris G. Single anterior cervical discectomy and fusion (ACDF) using self-locking stand-alone polyetheretherketone (PEEK) cage: evaluation of pain and health-related quality of life. J Spine Surg. 2017;3:312–322.

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Keller T, Holland MC. Some notable American spine surgeons of the 19th century. Spine (Phila Pa 1976). 1997;22:1413–1417.

    CAS  Article  Google Scholar 

  48. 48.

    Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13:77–86.

    PubMed  Article  Google Scholar 

  49. 49.

    King D. Internal fixation for lumbosacral fusion. J Bone Joint Surg Am. 1948;30:560–578.

    Article  Google Scholar 

  50. 50.

    Krebsbach PH, Gu K, Franceschi RT, Rutherford RB. Gene therapy–directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther. 2000;11(8):1201–1210.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Kuslich SD, Ulstrom CL, Griffith SL, Ahern JW, Dowdle JD. The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine (Phila Pa 1976). 1998;23:1267–1278; discussion 1279.

    CAS  Article  Google Scholar 

  52. 52.

    Kwon B, Kim DH. Lateral lumbar interbody fusion: indications, outcomes, and complications. J Am Acad Orthop Surg. 2016;24:96–105.

    PubMed  Article  Google Scholar 

  53. 53.

    Lange F, Peltier LF. The classic. Support for the spondylitic spine by means of buried steel bars, attached to the vertebrae. By Fritz Lange. 1910. Clin Orthop Relat Res. 1986; 203:3–6.

    Google Scholar 

  54. 54.

    Larson AN, Polly DW, Ackerman SJ, et al. What would be the annual cost savings if fewer screws were used in adolescent idiopathic scoliosis treatment in the US? J Neurosurg Spine. 2016;24(1):116–123.

    PubMed  Article  Google Scholar 

  55. 55.

    Li Z, Zhao Y, Tang J, et al. A comparison of a new zero-profile, stand-alone Fidji cervical cage and anterior cervical plate for single and multilevel ACDF: a minimum 2-year follow-up study. Euro Spine J. 2017;26:1129–1139.

    Article  Google Scholar 

  56. 56.

    Lin PM. A technical modification of Cloward’s posterior lumbar interbody fusion. Neurosurgery. 1977;1(2):118–124.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Lister J. On the antiseptic principle in the practice of surgery. Brit Med J. 1867;2:246–248.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Lopez GD, Hijji FY, Narain AS, Yom KH, Singh K. Iliac crest bone graft: a minimally invasive harvesting technique. Clin Spine Surg. 2017;30(10):439–441.

    PubMed  Article  Google Scholar 

  59. 59.

    Macewen W. Observations concerning transplantation of bone. Illustrated by a case of inter-human osseous transplantation, whereby over two-thirds of the shaft of a humerus was restored. Proc Royal Soc London. 1881;32:232–247.

    Article  Google Scholar 

  60. 60.

    Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res. 1984:125–141.

  61. 61.

    Malhotra D, Kalb S, Rodriguez-Martinez N, et al. Instrumentation of the posterior thoracolumbar spine: from wires to pedicle screws. Neurosurgery. 2014;10 Suppl 4:497–504; discussion 505.

    PubMed  Google Scholar 

  62. 62.

    Mariconda M, Galasso O, Barca P, Milano C. Minimum 20-year follow-up results of Harrington rod fusion for idiopathic scoliosis. Euro Spine J. 2005;14:854–861.

    CAS  Article  Google Scholar 

  63. 63.

    McGilvray KC, Waldorff EI, Easley J, et al. Evaluation of a polyetheretherketone (PEEK) titanium composite interbody spacer in an ovine lumbar interbody fusion model: biomechanical, microcomputed tomographic, and histologic analyses. Spine J. 2017;17:1907–1916.

    PubMed  Article  Google Scholar 

  64. 64.

    Minamide A, Yoshida M, Kawakami M, et al. The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion. Spine (Phila Pa 1976). 2005;30:1134–1138.

    Article  Google Scholar 

  65. 65.

    Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):2–18.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Moftakhar R, Trost GR. Anterior cervical plates: a historical perspective. Neurosurg Focus. 2004;16:E8.

    PubMed  Article  Google Scholar 

  67. 67.

    Nemoto O, Asazuma T, Yato Y, Imabayashi H, Yasuoka H, Fujikawa A. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Euro Spine J. 2014;23:2150–2155.

    Article  Google Scholar 

  68. 68.

    Ni J, Zheng Y, Liu N, et al. Radiological evaluation of anterior lumbar fusion using PEEK cages with adjacent vertebral autograft in spinal deformity long fusion surgeries. Euro Spine J. 2015;24:791–799.

    Google Scholar 

  69. 69.

    Oliver JD, Goncalves S, Kerezoudis P, et al. Comparison of outcomes for anterior cervical discectomy and fusion with and without anterior plate fixation: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2018;43:E413–E422.

    Article  Google Scholar 

  70. 70.

    Omeis I, DeMattia JA, Hillard VH, Murali R, Das K. History of instrumentation for stabilization of the subaxial cervical spine. Neurosurg Focus. 2004;16:E10.

    PubMed  Article  Google Scholar 

  71. 71.

    Paxinos O, Ghanayem AJ, Zindrick MR, et al. Anterior cervical discectomy and fusion with a locked plate and wedged graft effectively stabilizes flexion-distraction stage-3 injury in the lower cervical spine: a biomechanical study. Spine (Phila Pa 1976). 2009;34(1):E9–E15.

    Article  Google Scholar 

  72. 72.

    Ranawat CS, O’Leary P, Pellicci P, Tsairis P, Marchisello P, Dorr L. Cervical spine fusion in rheumatoid arthritis. J Bone Joint Surg Am. 1979;61:1003–1010.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Robbins MA, Haudenschild DR, Wegner AM, Klineberg EO. Stem cells in spinal fusion. Global Spine J. 2017;7:801–810.

    PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Robinson RA, Smith GW. Anterolateral cervical disc removal and interbody fusion for cervical disc syndrome. Bull John Hopkins Hosp. 1955;96:223–224.

    Google Scholar 

  75. 75.

    Roy-Camille R, Demeulenaere C. Ostéosynthèse du rachis dorsal, lombaire et lombo-sacré par plaques métalliques vissées dans les pédicules vertébraux et les apophyses articulaires. Presse Méd. 1970;78:1447–1448.

  76. 76.

    Roy-Camille R, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle screw plating. Clin Orthop Relat Res. 1986:7–17.

  77. 77.

    Sakaura H, Ohnishi A, Yamagishi A, Ohwada T. Early fusion status after posterior lumbar interbody fusion with cortical bone trajectory screw fixation: a comparison of titanium-coated polyetheretherketone cages and carbon polyetheretherketone cages. Asian Spine J. 2019;13(2):248–253.

    PubMed  Article  Google Scholar 

  78. 78.

    Salzmann SN, Shue J, Hughes AP. Lateral lumbar interbody fusion—outcomes and complications. Curr Rev Musculoskelet Med. 2017;10:539–546.

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Schwartz M. The life and works of Louis Pasteur. J Appl Microbiol. 2001;91:597–601.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Shaw KA, Griffith MS, Shaw VM, Devine JG, Gloystein DM. Harvesting autogenous cancellous bone graft from the anterior iliac crest. JBJS Essent Surg Tech. 2018;8:e20-e20.

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Sheha ED, Meredith DS, Shifflett GD, et al. Postoperative pain following posterior iliac crest bone graft harvesting in spine surgery: a prospective, randomized trial. Spine J. 2018;18(6):986–992.

    PubMed  Article  Google Scholar 

  82. 82.

    Simmonds MC, Brown JV, Heirs MK, et al. Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion: a meta-analysis of individual-participant data. Ann Intern Med. 2013;158(12):877–889.

    PubMed  Article  Google Scholar 

  83. 83.

    Smith KA, Russo GS, Vaccaro AR, Arnold PM. Scientific, clinical, regulatory, and economic aspects of choosing bone graft/biological options in spine surgery. Neurosurgery. 2019;84(4):827–835. https://doi.org/10.1093/neuros/nyy322

    Article  PubMed  Google Scholar 

  84. 84.

    Tapia JL, Suresh L, Plata M, Aguirre A. Ancient esthetic dentistry in Mesoamerica. Alpha Omegan. 2002;95(4):21–24.

    PubMed  Google Scholar 

  85. 85.

    Tarpada SP, Morris MT, Burton DA. Spinal fusion surgery: a historical perspective. J Orthop. 2016;14:134–136.

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Thompson WA, Ralson EL. Pseudarthrosis following spine fusion. J Bone Joint Surg Am. 1949;31A(2):400–405.

    Article  Google Scholar 

  87. 87.

    Thompson WA, Gristina AG, Healy WA Jr. Lumbosacral spine fusion: a method of bilateral posterolateral fusion combined with a Hibbs fusion. J Bone Joint Surg Am. 1974;56:1643–1647.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Tuli SM. Historical aspects of Pott’s disease (spinal tuberculosis) management. European Spine J. 2013;22 Suppl 4:529–538.

    Article  Google Scholar 

  89. 89.

    Urist MR. Bone: formation by autoinduction. Science. 1965;150:893–899.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Urist MR. The classic: a morphogenetic matrix for differentiation of bone tissue. Clin Orthop Relat Res. 2009;467(12):3068–3070.

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Venable CS, Stuck WG. Three years’ experience with vitallium in bone surgery. Ann Surg. 1941;114:309–315.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Viswanathan VK, Rajaram Manoharan SR, Subramanian S, Moon A. Nanotechnology in spine surgery: a current update and critical review of the literature. World Neurosurg. 2019;123:142–155.

    PubMed  Article  Google Scholar 

  93. 93.

    Wagner PC, Grant BD, Bagby GW, Gallina AM, Sande RD, Ratzlaff MJ. Evaluation of cervical spinal fusion as a treatment in the equine “wobbler” syndrome. Vet Surg. 1979;8(3):84–88.

    Article  Google Scholar 

  94. 94.

    Wang M, Lam RW, Abbah SA, et al. Heparin-based polyelectrolyte complex enhances the therapeutic efficacy of bone morphogenetic protein-2 for posterolateral fusion in a large animal model. Spine (Phila Pa 1976). 2016;41:1199–1207.

    Article  Google Scholar 

  95. 95.

    Wang W, Miao Y, Zhou X, et al. Local delivery of BMP-2 from poly(lactic-co-glycolic acid) microspheres incorporated into porous nanofibrous scaffold for bone tissue regeneration. J Biomed Nanotech. 2017;13:1446–1456.

    CAS  Article  Google Scholar 

  96. 96.

    Watkins MB. Posterolateral fusion of the lumbar and lumbosacral spine. J Bone Joint Surg Am. 1953;35-a:1014–1018.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Weiner BK. Lumbar interbody cages. Spine (Phila Pa 1976). 1998;23:634–640.

    CAS  Article  Google Scholar 

  98. 98.

    Weiner BK. Historical perspective: the development and use of spinal disease categories. Spine (Phila Pa 1976). 2008;33(8):925–930.

    Article  Google Scholar 

  99. 99.

    Weiner BK, Fraser RD. Spine update lumbar interbody cages. Spine (Phila Pa 1976). 1998;23:634–640.

    CAS  Article  Google Scholar 

  100. 100.

    Yasko AW, Lane J, Fellinger E, Rosen V, Wozney J, Wang EA. The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats. J Bone Joint Surg Am. 1992;74:659–670.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Zucherman J, Hsu K, White A, Wynne G. Early results of spinal fusion using variable spine plating system. Spine (Phila Pa 1976). 1988;13:570–579.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sohrab Virk MD, MBA.

Ethics declarations

Conflicts of Interest

Sohrab Virk, MD, MBA, declares no conflicts of interest. Sheeraz Qureshi, MD, MBA, reports consulting fees from Stryker, Globus Medical, Inc., and Paradigm Spine; royalties from RTI, Globus Medical, Inc., and Stryker; ownership interest in Avaz Surgical and Vital 5; medical/scientific advisory board membership at Spinal Simplicity and Lifelink.com; board membership at Healthgrades and the Minimally Invasive Spine Study Group; and honoraria from AMOpportunities, outside the submitted work. Harvinder Sandhu, MD, reports personal fees from Biorestorative Therapies and Prosidyan Medical and stock or stock options from Amedica, Biorestorative Therapies, Paradigm Spine, Prosydian Medical, and Spinewave, outside the submitted work.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Electronic Supplementary Material


(PDF 1.19 kb)


(PDF 1.19 kb)


(PDF 1.19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Virk, S., Qureshi, S. & Sandhu, H. History of Spinal Fusion: Where We Came from and Where We Are Going. HSS Jrnl 16, 137–142 (2020). https://doi.org/10.1007/s11420-020-09747-7

Download citation


  • history of spinal surgery
  • spinal fusion
  • bone graft
  • spine technology