Lateral Lumbar Interbody Fusion: What Is the Evidence of Indirect Neural Decompression? A Systematic Review of the Literature

Abstract

Background

In the past decade, lateral lumbar interbody fusion (LLIF) has gained in popularity. A proposed advantage is the achievement of indirect neural decompression. However, evidence of the effectiveness of LLIF in neural decompression in lumbar degenerative conditions remains unclear.

Questions/Purposes

We sought to extrapolate clinical and radiological results and consequently the potential benefits and limitations of LLIF in indirect neural decompression in degenerative lumbar diseases.

Methods

We conducted a systematic review of the literature in English using the 2009 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and checklist. Scores on the Oswestry Disability Index (ODI) and visual analog scale (VAS) for back and leg pain were extracted, as were data on the following radiological measurements: disc height (DH), foraminal height (FH), foraminal area (FA), central canal area (CA).

Results

In the 42 articles included, data on 2445 patients (3779 levels treated) with a mean follow-up of 14.8 ± 5.9 months were analyzed. Mean improvements in VAS back, VAS leg, and ODI scale scores were 4.1 ± 2.5, 3.9 ± 2.2, and 21.9 ± 7.2, respectively. Post-operative DH, FH, FA, and CA measurements increased by 68.6%, 21.9%, 37.7%, and 29.3%, respectively.

Conclusion

Clinical results indicate LLIF as an efficient technique in indirect neural decompression. Analysis of radiological data demonstrates the effectiveness of symmetrical foraminal decompression. Data regarding indirect decompression of central canal and lateral recess are inconclusive and contradictory. Bony stenosis appears as an absolute contraindication. The role of facet joint degeneration is unclear. This systematic review provides a reference for surgeons to define the potential and limitations of LLIF in indirect neural elements decompression.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Ahmadian A, Bach K, Bolinger B, Malham GM, Okonkwo DO, Kanter AS, Uribe JS. Stand-alone minimally invasive lateral lumbar interbody fusion: multicenter clinical outcomes. J Clin Neurosci. 2015;22:740–746.

    PubMed  Article  Google Scholar 

  2. 2.

    Ahmadian A, Deukmedjan AR, Abel N, Dakwar E, Uribe JS. Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization. A review. J Neurosurg Spine. 2013;18: 289–297.

    PubMed  Article  Google Scholar 

  3. 3.

    Aichmar A, Alimi M, Hughes AP, et al. Single-level lateral lumbar interbody fusion for the treatment of adjacent segment disease. Spine (Phila Pa 1976). 2017;42(9):E515–E522

    Article  Google Scholar 

  4. 4.

    Alimi M, Hofstetter CP, Cong GTC, Tsouris AJ, James AR, Paulo D, Elowitz E, Hartl R. Radiological and clinical outcomes following extreme lateral interbody fusion. J Neurosurg Spine. 2014;20:623–635.

    PubMed  Article  Google Scholar 

  5. 5.

    Alimi M, Hofstetter CP, Tsiouris AJ, Elowitz E, Hartl R. Extreme lateral interbody fusion for unilateral symptomatic vertical foraminal stenosis. Eur Spine J. 2015;24 (Suppl 3):346–352.

    PubMed  Article  Google Scholar 

  6. 6.

    Berjano P, Lamartina C. Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J. 2013;22(Suppl 2):S242–S253.

    PubMed  Article  Google Scholar 

  7. 7.

    Campbell PG, Nunley PD, Cavanaugh D, Kerr E, Utter PA, Frank K, Stone M. Short-term outcome of lateral interbody fusion without decompression for the treatment of symptomatic degenerative spondylolithesis at L4-L5. Neurosurg Focus. 2018;44 (1):E6.

    PubMed  Article  Google Scholar 

  8. 8.

    Caputo AM, Michael KW, Chapmann TM, et al. Extreme lateral interbody fusion for the treatment of adult degenerative scoliosis. J Clin Neurosci. 2013;20:1558–1563.

    PubMed  Article  Google Scholar 

  9. 9.

    Castellvi AE, Nienke TW, Marulanda GA, Murtagh RD, Santoni BG. Indirect decompression of lumbar stenosis with transpsoas interbody cages and percutaneous posterior instrumentation. Clin Orthop Relat Res. 2014;472: 1784–1791.

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Cowley P. Neuroimaging of spinal canal stenosis. Magn Reson Imaging Clin N Am. 2016;24(3):523–539.

    PubMed  Article  Google Scholar 

  11. 11.

    Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcome and safety of the minimally invasive, lateral retroperitoneal trans psoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28 (3):E8.

    PubMed  Article  Google Scholar 

  12. 12.

    Dakwar E, Le VT, Baaj AA, Le AX, Smith WD, Akbarnia BA, Uribe JS. Abdominal wall paresis as a complication of minimally invasive lateral transpsoas interbody fusion. Neurosurg Focus. 2011;31 (4):E18.

    PubMed  Article  Google Scholar 

  13. 13.

    Dominguez I, Luque R, Noriega M, Rey J, Alia J, Marco-Martinez F. Extreme lateral lumbar interbody fusion. Surgical technique, outcomes and complications after a minimum of 1-year follow-up. Rev Esp Cir Ortop Traumatol. 2018;61(1):8–18.

    Google Scholar 

  14. 14.

    Elowitz EH, Yanni DS, Chwajol M, Starke RM, Perin NI. Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and clinical analysis. Minim Invas Neurosurg. 2011;54: 201–206.

    CAS  Article  Google Scholar 

  15. 15.

    Formica M, Berjano P, Cavagnaro L, Zanirato A, Piazzolla A, Formica C. Extreme lateral approach to the spine in degenerative and post traumatic lumbar disease: selection process, results and complications. Eur Spine J. 2014;23(Suppl 6): 648–692.

    Google Scholar 

  16. 16.

    Formica M, Zanirato A, Cavagnaro L, Basso M, Divano S, Felli L, Formica C. Extreme lateral interbody fusion in spinal revision surgery: clinical results and complications. Eur Spine J. 2017;26(Suppl 4):464–470.

    PubMed  Article  Google Scholar 

  17. 17.

    Gabel BC, Hoshide R, Taylor W. An algorithm to predict success of indirect decompression using the extreme lateral lumbar interbody fusion procedure. Cereus. 2015;7(9):e317.

    Google Scholar 

  18. 18.

    Hijji FY, Narain AS, Bohl DD, Ahn J, Long WW, DiBattista JV, Kudaravalli KT, Singh K. Lateral lumbar interbody fusion: a systematic review of complication rates. Spine J. 2017;17: 1412–1419.

    PubMed  Article  Google Scholar 

  19. 19.

    Isaacs RE, Sembrano JN, Tohmeh AGSOLAS Degenerative Study Group. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis: part II: radiographic findings. Spine (Phila Pa 1976). 2016;41 (Suppl 8):133–144.

    Google Scholar 

  20. 20.

    Janssen I, Lang G, Navarro-Ramirez R, et al. Can fan beam computed tomography accurately predict indirect decompression in minimally invasive spine surgery fusion procedures? World Neurosurg. 2017;107: 322–333.

    PubMed  Article  Google Scholar 

  21. 21.

    Kepler CK, Sharma AK, Huang RC, et al. Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg Spine. 2012;16:329–333.

    PubMed  Article  Google Scholar 

  22. 22.

    Khajavi K, Shen A, Hutchinson A. Substantial clinical benefit of minimally invasive lateral interbody fusion for degenerative spondylolisthesis. Eur Spine J. 2015;24 (Suppl 3):314–321.

    PubMed  Article  Google Scholar 

  23. 23.

    Khajavi K, Shen A, Lagina M, Hutchinson A. Comparison of clinical outcomes following minimally invasive lateral interbody fusion stratified by preoperative diagnosis. Eur Spine J. 2015;24 (Suppl 3):322–330.

    PubMed  Article  Google Scholar 

  24. 24.

    Kotwal S, Kawaguchi S, Lebl D, et al. Minimally invasive lateral lumbar interbody fusion. clinical and radiological outcome at a minimum 2-year follow-up. J Spinal Disord Tech. 2012;28:119–125.

    Article  Google Scholar 

  25. 25.

    Lang G, Navarro-Ramirez R, Gandevia L, et al. Elimination of subsidence with 26-mm-wide cages in extreme lateral interbody fusion. World Neurosurg. 2017; 104: 644–652.

    PubMed  Article  Google Scholar 

  26. 26.

    Lang G, Perrech M, Navarro-Ramirez R, et al. Potential and limitations of neural decompression in extreme lateral interbody fusion—a systematic review. World Neurosurg. 2017;101:99–113.

    PubMed  Article  Google Scholar 

  27. 27.

    Lee YS, Park SW, Kim YB. Direct lateral lumbar interbody fusion: clinical and radiological outcomes. J Korean Neurosurg Soc. 2014;55(5):248–254.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Malham GM, Ellis NJ, Parker RM, Blecher CM, Goss B, Seex KA. Maintenance of segmental lordosis and disc height in standalone and instrumented extreme lateral interbody fusion (XLIF). Clin Spine Surg. 2017;30(2):E90-E98.

    PubMed  Article  Google Scholar 

  29. 29.

    Malham GM, Parker RM, Goss B, Blecher CM, Ballok ZE. Indirect foraminal decompression is independent of metabolically active facet arthropathy in extreme lateral interbody fusion. Spine (Phila Pa 1976). 2014;39(22):E1303-E1310.

    Article  Google Scholar 

  30. 30.

    Malham GM, Parker RM, Goss B, Blecher CM. Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study. Eur Spine J. 2015;24 (Suppl 3): 339–345.

    PubMed  Article  Google Scholar 

  31. 31.

    Mamisch N, Brumann M, Hodler J, Lumbar Spinal Stenosis Outcome Study Working Group, et al.. Radiologic criteria for the diagnosis of spinal stenosis: results of a Delphi survey. Radiology. 2012;264(1):174–179.

    PubMed  Article  Google Scholar 

  32. 32.

    Marchi L, Abdala N, Oliveira L, Amaral R, Couthino E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone interbody fusion. J Neurosurg Spine. 2013;19:110–118.

    PubMed  Article  Google Scholar 

  33. 33.

    Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Stand-alone lateral interbody fusion for the treatment of low-grade degenerative spondylolisthesis. ScientificWorldJournal. 2012;2012:456346. doi:https://doi.org/10.1100/2012/456346

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Martin B, Mirza SK, Spina N, Spiker WR, Lawrence B, Brodke DS. Trends in lumbar fusion procedure rates and associated hospital costs for degenerative spinal diseases in the United States, 2004-2015. Spine (Phila Pa 1976). 2019;44(5):369–376.

    Article  Google Scholar 

  35. 35.

    Na YC, Lee HS, Shin DA, Ha Y, Kim KN, Yoon DH. Initial clinical outcomes of minimally invasive lateral lumbar interbody fusion in degenerative lumbar disease: a preliminary report on the experience of a single institution with 30 cases. Korean J Spine. 2012;9(3):187–192.

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Navarro-Ramirez R, Berlin C, Lang G, et al. A new volumetric radiologic method to asses indirect decompression after extreme lateral interbody fusion using high-resolution intraoperative computed tomography. World Neurosurg. 2018;109:59–67.

    PubMed  Article  Google Scholar 

  37. 37.

    Navarro-Ramirez R, Lang G, Moriguchi Y, et al. Are locked facets a contraindication for extreme lateral interbody fusion? World Neurosurg. 2017;100:607–618.

    PubMed  Article  Google Scholar 

  38. 38.

    Nemani VM, Aichmar A, Taher F, Lebl DR, Hughes AP, Sama AA. Rate of revision surgery after stand-alone lateral lumbar interbody fusion: clinical article. Spine (Phila Pa 1976). 2014;39:E326-E331.

    Article  Google Scholar 

  39. 39.

    OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. Oxford Center for Evidence-Based Medicine. 2016. Available from http://www.cebm.net/index .aspx?o=5653. Accessed August 2017.

  40. 40.

    Oliveira L, Marchi L, Coutinho E, Pimenta L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976). 2010;35(26S):331–337.

    Article  Google Scholar 

  41. 41.

    Ozgur BM, Agarwal V, Nail E, Pimenta L. Two-year clinical and radiographic success of minimally invasive lateral transpsoas approach for the treatment of degenerative lumbar conditions. SAS Journal. 2010;4:41–46.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–443.

    PubMed  Article  Google Scholar 

  43. 43.

    Park SJ, Lee CS, Chung SS, Kang SS, Park HJ, Kim SH. The ideal cage position for achieving both indirect neural decompression and segmental angle restoration in lateral lumbar interbody fusion (LLIF). Clin Spine Surg. 2017;30(6):E784-E790.

    PubMed  Article  Google Scholar 

  44. 44.

    Pawar AY, Hughes AP, Sama AA, Girardi FP, Lebl DR, Cammisa FP. A comparative study of lateral lumbar interbody fusion and posterior lumbar interbody fusion in degenerative lumbar spondylolisthesis. Asian Spine J. 2015;9:668–674.

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Pereira EAC, Farwana M, Lam KS. Extreme lateral interbody fusion relieves symptoms of spinal stenosis and low-grade spondylolisthesis by indirect decompression in complex patients. J Clin Neurosci. 2017;35:56–61.

    PubMed  Article  Google Scholar 

  46. 46.

    Rodgers JA, Gerber EJ, Lehmen JA, Rodgers BW. Clinical and radiographic outcome in less invasive lumbar fusion: XLIF at two year follow-up. J Spine Neurosurg. 2013;2:3.

    Article  Google Scholar 

  47. 47.

    Rodgers W, Cox C, Gerber E. Minimally invasive treatment (XLIF) of adjacent segment disease after prior lumbar fusion. Internet J Minim Invasive Spinal Technol. 2009;3(4).

  48. 48.

    Rodgers WB, Cox CS, Gerber EJ. Early complications of extreme lateral interbody fusion in the obese. J Spinal Disord Tech. 2010;23:393–397.

    PubMed  Article  Google Scholar 

  49. 49.

    Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion. an analysis of 600 cases. Spine (Phila Pa 1976). 2010;36(1):26–33.

    Article  Google Scholar 

  50. 50.

    Rodgers WB, Gerber EJ, Patterson JR. Fusion after minimally invasive lumbar interbody fusion: analysis of extreme lateral interbody fusion by computed tomography. SAS J. 2010;4:63–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Segawa T, Inanami H, Koga H. Clinical evaluation of microendoscopy-assisted extreme lateral interbody fusion. J Spine Surg. 2017;3(3):398–402.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Sembrano JN, Tohmeh AG, Isaacs RE, SOLAS Degenerative Study Group. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis: part I: clinical findings. Spine (Phila Pa 1976). 2016;41 (Suppl8):123–132.

    Google Scholar 

  53. 53.

    Smith WD, Youssef JA, Christian G, Serrano S, Hyde J. Lumbarized sacrum as a relative contraindication for lateral transpsoas interbody fusion at L5-6. J Spinal Disord Tech. 2012;25:285–291.

    PubMed  Article  Google Scholar 

  54. 54.

    Steurer J, Roner S, Gnannt R, Hodler J. LumbSten Research Collaboration. Quantitative radiologic criteria for the diagnosis of lumbar spinal stenosis: a systematic literature review. BMC Musculoskelet Disord. 2011;12:175.

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Tessitore E, Molliqaj G, Schaller K, Gautschi OP. Extreme lateral interbody fusion (XLIF): a single-center clinical and radiological follow-up study of 20 patients. J Clin Neurosci. 2017;36:76–79.

    PubMed  Article  Google Scholar 

  56. 56.

    Tohmeh AG, Khorsand D, Watson B, Zielinski X. Radiographical and clinical evaluation of extreme lateral interbody fusion. Spine (Phila Pa 1976). 2014;39:E1582-E1591.

    Article  Google Scholar 

  57. 57.

    Uribe JS, Beckman J, Mummaneni PV, Okonkwo D, Nunley P, Wang MY, Mundis GM, Park P, Eastlack R, Anand N, Kanter A, Lamarca F, Fessler R, Shaffrey CI, Lafage V, Chou D, Deviren V. The MIS-ISSG Group. Does MIS surgery allow for shorter construct in the surgical treatment of adult spinal deformity? Neurosurgery. 2017;80:489–497.

    PubMed  Article  Google Scholar 

  58. 58.

    Walker CT, Farber SH, Cole TS, Xu DS, Godzik J, Whiting AC, Hartman C, Porter RW, Turner JD, Uribe J. Complications for minimally invasive lateral interbody arthrodesis: a systematic review and meta-analysis comparing prepsoas and transpsoas approaches. J Neurosurg Spine. 2019;January 25.

  59. 59.

    Wang TY, Nayar G, Brown CR, Pimenta L, Karikari IO, Isaacs RE. Bony lateral recess stenosis and other radiographic predictors of failed indirect decompression vie extreme lateral interbody fusion: multi-institutional analysis of 101 consecutive spinal levels. World Neurosurg. 2017;106:819–826.

    PubMed  Article  Google Scholar 

  60. 60.

    Yang Y, Zhang L, Dong J, et al. Intraoperative myelography in transpsoas lateral lumbar interbody fusion for degenerative lumbar spinal stenosis: a preliminary prospective study. Biomed Res Int. 2017:3742182. doi:https://doi.org/10.1155/2017/3742182

    Google Scholar 

  61. 61.

    Yoshida G, Hasegawa T, Yamato Y, et al. Minimum clinically important differences in Oswestry Disability Index domains and their impact on adult spinal deformity surgery. Asian Spine J. 2019;13(1):35–44.

    PubMed  Article  Google Scholar 

  62. 62.

    Youssef JA, McAfee PC, Patty CA, et al. Minimally invasive surgery: lateral approach interbody fusion. result and review. Spine (Phila Pa 1976). 2010;35(26S):S302–311.

    Article  Google Scholar 

  63. 63.

    Zanirato A, Damilano M, Formica M, et al. Complications in adult spine deformity surgery: a systematic review of the recent literature with reporting of aggregated incidences. Eur Spine J. 2018;27(9):2272–2284.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Zanirato MD.

Ethics declarations

Conflict of Interest

Matteo Formica, MD; Emanuele Quarto, MD; Andrea Zanirato, MD; Lorenzo Mosconi, MD; Davide Vallerga, MD; Irene Zotta, MD; Maddalena Lontaro Baracchini, MD; Carlo Formica, MD; and Lamberto Felli, MD, declare that they have no conflicts of interest.

Human/Animal Rights

N/A

Informed Consent

N/A

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Additional information

Level of Evidence: Level IV: Systematic Review of Level II-Level IV Studies

Electronic Supplementary Material

ESM 1

(PDF 1.19 mb)

ESM 2

(PDF 1.19 mb)

ESM 3

(PDF 1.19 mb)

ESM 4

(PDF 1.19 mb)

ESM 5

(PDF 1.19 mb)

ESM 6

(PDF 1.19 mb)

ESM 7

(PDF 1.19 mb)

ESM 8

(PDF 1.19 mb)

ESM 9

(PDF 1.19 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Formica, M., Quarto, E., Zanirato, A. et al. Lateral Lumbar Interbody Fusion: What Is the Evidence of Indirect Neural Decompression? A Systematic Review of the Literature. HSS Jrnl 16, 143–154 (2020). https://doi.org/10.1007/s11420-019-09734-7

Download citation

Keywords

  • lateral lumbar interbody fusion
  • indirect neural decompression
  • lumbar stenosis
  • outcomes
  • extreme lateral interbody fusion
  • lumbar degenerative diseases