Posterior Fusion for the Subaxial Cervical Spine: A Review of the Major Techniques


Posterior fusion is a powerful tool to address pathology of the cervical spine, but the decision to fuse at any level should be made with great care. Various methods and constructs for posterior cervical fusion exist, all of which aim to restore the posterior tension band’s ability to resist flexion forces. We identified articles regarding posterior fusion of the subaxial cervical spine in MEDLINE, Google Scholar, and PubMed. This article is a narrative review of earlier and current concepts regarding the posterior fusion of the subaxial cervical spine, including wiring, translaminar screws, lateral mass screws, and pedicle screws, weighing the strengths and weakness of the different modalities that the surgeon should bear in mind in creating operative plans individualized to patient pathology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Abdu WA, Bohlman HH. Techniques of subaxial posterior cervical spine fusions: an overview. Orthopedics. 1992;15(3):287–295.

    CAS  PubMed  Google Scholar 

  2. 2.

    Abumi K, Kaneda K. Pedicle screw fixation for nontraumatic lesions of the cervical spine. Spine. 1997;22(16):1853–1863.

    CAS  Article  Google Scholar 

  3. 3.

    Alvin MD, Abdullah KG, Steinmetz MP, et al. Translaminar screw fixation in the subaxial cervical spine: quantitative laminar analysis and feasibility of unilateral and bilateral translaminar virtual screw placement. Spine (Phila Pa 1976). 2012;37(12):E745–E751. doi:

    Article  Google Scholar 

  4. 4.

    An HS, Gordin R, Renner K. Anatomic considerations for plate–screw fixation of the cervical spine. Spine (Phila Pa 1976). 1991;16(10 Suppl):S548–S551.

    CAS  Article  Google Scholar 

  5. 5.

    Anderson PA, Henley MB, Grady MS, Montesano PX, Winn HR. Posterior cervical arthrodesis with AO reconstruction plates and bone graft. Spine (Phila Pa 1976). 1991;16(3 Suppl):S72–S79.

    CAS  Article  Google Scholar 

  6. 6.

    Benzel EC, Kesterson L. Posterior cervical interspinous compression wiring and fusion for mid to low cervical spinal injuries. J Neurosurg. 1989;70(6):893–899. doi:

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Cahill DW, Bellegarrigue R, Ducker TB. Bilateral facet to spinous process fusion: a new technique for posterior spinal fusion after trauma. Neurosurgery. 1983;13(1):1–4.

    CAS  Article  Google Scholar 

  8. 8.

    Callahan RA, Johnson RM, Margolis RN, Keggi KJ, Albright JA, Southwick WO. Cervical facet fusion for control of instability following laminectomy. J Bone Joint Surg Am. 1977;59(8):991–1002.

    CAS  Article  Google Scholar 

  9. 9.

    Choi JW, Lee JK, Moon KS, et al. Endovascular embolization of iatrogenic vertebral artery injury during anterior cervical spine surgery: report of two cases and review of the literature. Spine (Phila Pa 1976). 2006;31(23):E891–E894. doi:

    Article  Google Scholar 

  10. 10.

    Cosgrove GR, Theron J. Vertebral arteriovenous fistula following anterior cervical spine surgery. Report of two cases. J Neurosurg. 1987;66(2):297–299. doi:

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res. 1984(189):65–76.

    Google Scholar 

  12. 12.

    Devin CJ, Kang JD. Vertebral artery injury in cervical spine surgery. Instr Course Lect. 2009;58:717–28.

    PubMed  Google Scholar 

  13. 13.

    Errico T, Uhl R, Cooper P, Casar R, McHenry T. Pullout strength comparison of two methods of orienting screw insertion in the lateral masses of the bovine cervical spine. J Spinal Disord. 1992;5(4):459–463.

    CAS  Article  Google Scholar 

  14. 14.

    Garcia Alzamora M, Rosahl SK, Lehmberg J, Klisch J. Life-threatening bleeding from a vertebral artery pseudoaneurysm after anterior cervical spine approach: endovascular repair by a triple stent-in-stent method. Case report. Neuroradiology. 2005;47(4):282–286. doi:

    Article  PubMed  Google Scholar 

  15. 15.

    Garfin SR, Moore MR, Marshall LF. A modified technique for cervical facet fusions. Clin Orthop Relat Res. 1988(230):149–153.

    Google Scholar 

  16. 16.

    Ghori A, Le HV, Makanji H, Cha T. Posterior fixation techniques in the subaxial cervical spine. Cureus. 2015;7(10):e338. doi:

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Gill K, Paschal S, Corin J, Ashman R, Bucholz RW. Posterior plating of the cervical spine. A biomechanical comparison of different posterior fusion techniques. Spine (Phila Pa 1976). 1988;13(7):813–816.

    CAS  Article  Google Scholar 

  18. 18.

    Grob D, Humke T. Translaminar screw fixation in the lumbar spine: technique, indications, results. Eur Spine J. 1998;7(3):178–186.

    CAS  Article  Google Scholar 

  19. 19.

    Guo F, Dai J, Zhang J, et al. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine. PLoS One. 2017;12(2):e0171509. doi:

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hadra B. Wiring the spinous processes in Pott’s disease. Lancet. 1891;138(3564):1408. doi:

    Article  Google Scholar 

  21. 21.

    Heller JG, Carlson GD, Abitbol JJ, Garfin SR. Anatomic comparison of the Roy-Camille and Magerl techniques for screw placement in the lower cervical spine. Spine (Phila Pa 1976).. 1991;16(10 Suppl):S552–S557.

    CAS  Article  Google Scholar 

  22. 22.

    Heller JG, Silcox DH 3rd, Sutterlin CE 3rd. Complications of posterior cervical plating. Spine (Phila Pa 1976). 1995;20(22):2442–2448.

    CAS  Article  Google Scholar 

  23. 23.

    Hong JT, Sung JH, Son BC, Lee SW, Park CK. Significance of laminar screw fixation in the subaxial cervical spine. Spine (Phila Pa 1976). 2008;33(16):1739–1743. doi:

    Article  Google Scholar 

  24. 24.

    Hong JT, Yi JS, Kim JT, Ji C, Ryu KS, Park CK. Clinical and radiologic outcome of laminar screw at C2 and C7 for posterior instrumentation—review of 25 cases and comparison of C2 and C7 intralaminar screw fixation. World Neurosurg. 2010;73(2):112–118; discussion e15. doi:

    Article  PubMed  Google Scholar 

  25. 25.

    Horgan MA, Kellogg JX, Chesnut RM. Posterior cervical arthrodesis and stabilization: an early report using a novel lateral mass screw and rod technique. Neurosurgery. 1999;44(6):1267–1271; discussion 71–72.

    CAS  PubMed  Google Scholar 

  26. 26.

    Jang SH, Hong JT, Kim IS, Yeo IS, Son BC, Lee SW. C7 posterior fixation using intralaminar screws: early clinical and radiographic outcome. J Korean Neurosurg Soc. 2010;48(2):129–133. doi:

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Jeanneret B, Magerl F, Ward EH, Ward JC. Posterior stabilization of the cervical spine with hook plates. Spine (Phila Pa 1976). 1991;16(3 Suppl):S56-S63.

    CAS  Article  Google Scholar 

  28. 28.

    Jones EL, Heller JG, Silcox DH, Hutton WC. Cervical pedicle screws versus lateral mass screws. Anatomic feasibility and biomechanical comparison. Spine (Phila Pa 1976). 1997;22(9):977–982.

    CAS  Article  Google Scholar 

  29. 29.

    Kast E, Mohr K, Richter HP, Borm W. Complications of transpedicular screw fixation in the cervical spine. Eur Spine J 2006;15(3):327–334. doi:

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Katsaridis V, Papagiannaki C, Violaris C. Treatment of an iatrogenic vertebral artery laceration with the Symbiot self expandable covered stent. Clin Neurol Neurosurg. 2007;109(6):512–515. doi:

    Article  PubMed  Google Scholar 

  31. 31.

    Kotani Y, Cunningham BW, Abumi K, McAfee PC. Biomechanical analysis of cervical stabilization systems. An assessment of transpedicular screw fixation in the cervical spine. Spine (Phila Pa 1976). 1994;19(22):2529–2539.

    CAS  Article  Google Scholar 

  32. 32.

    Liu JK, Das K. Posterior fusion of the subaxial cervical spine: indications and techniques. Neurosurg Focus. 2001;10(4):E7.

    CAS  Article  Google Scholar 

  33. 33.

    Lovely TJ, Carl A. Posterior cervical spine fusion with tension-band wiring. J Neurosurg. 1995;83(4):631–635. doi:

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Luo J, Wu C, Huang Z, et al. The accuracy of the lateral vertebral notch-referred pedicle screw insertion technique in subaxial cervical spine: a human cadaver study. Arch Orthop Trauma Surg. 2017;137(4):517–522. doi:

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mahesh B, Upendra B, Mahan RS. The medial cortical pedicle screw—a new technique for cervical pedicle screw placement with partial drilling of medial cortex. Spine J. 2014;14(2):371–380. doi:

    Article  PubMed  Google Scholar 

  36. 36.

    Maki S, Koda M, Iijima Y, et al. Medially-shifted rather than high-riding vertebral arteries preclude safe pedicle screw insertion. J Clin Neurosci. 2016;29:169–172. doi:

    Article  PubMed  Google Scholar 

  37. 37.

    Mascarenhas D, Dreizin D, Bodanapally UK, Stein DM. Parsing the utility of CT and MRI in the subaxial cervical spine injury classification (SLIC) system: is CT SLIC enough? AJR Am J Roentgenol. 2016;206(6):1292–1297. doi:

    Article  PubMed  Google Scholar 

  38. 38.

    Maurer PK, Ellenbogen RG, Ecklund J, Simonds GR, van Dam B, Ondra SL. Cervical spondylotic myelopathy: treatment with posterior decompression and Luque rectangle bone fusion. Neurosurgery. 1991;28(5):680–683; discussion 3–4.

    CAS  Article  Google Scholar 

  39. 39.

    Miron RJ, Zhang Q, Sculean A, et al. Osteoinductive potential of 4 commonly employed bone grafts. Clin Oral Investig. 2016;20(8):2259–2265. doi:

    Article  PubMed  Google Scholar 

  40. 40.

    Nazarian SM, Louis RP. Posterior internal fixation with screw plates in traumatic lesions of the cervical spine. Spine (Phila Pa 1976). 1991;16(3 Suppl):S64–S71.

    CAS  Article  Google Scholar 

  41. 41.

    Neo M, Sakamoto T, Fujibayashi S, Nakamura T. The clinical risk of vertebral artery injury from cervical pedicle screws inserted in degenerative vertebrae. Spine (Phila Pa 1976). 2005;30(24):2800–2805.

    Article  Google Scholar 

  42. 42.

    Parker SL, McGirt MJ, Garces-Ambrossi GL, et al. Translaminar versus pedicle screw fixation of C2: comparison of surgical morbidity and accuracy of 313 consecutive screws. Neurosurgery. 2009;64(5 Suppl 2):343–348; discussion 8–9. doi:

    Article  PubMed  Google Scholar 

  43. 43.

    Rienmuller A, Buchmann N, Kirschke JS, et al. Accuracy of CT-navigated pedicle screw positioning in the cervical and upper thoracic region with and without prior anterior surgery and ventral plating. Bone Joint J. 2017;99-B(10):1373–1380. doi:

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Rogers WA. Fractures and dislocations of the cervical spine; an end-result study. J Bone Joint Surg Am. 1957;39-A(2):341–376.

    CAS  Article  Google Scholar 

  45. 45.

    Roy-Camille R, Saillant G, Mazel C. Internal fixation of the unstable cervical spine by a posterior osteosynthesis with plates and screws. In: Sherk HH, Dunn EJ, Eismont FJ, et al. eds. The Cervical Spine. 2nd ed. Philadelphia, PA: JB Lippincott; 1989:390–403.

    Google Scholar 

  46. 46.

    Sadrameli SS, Jafrani R, Staub BN, Radaideh M, Holman PJ. Minimally invasive, stereotactic, wireless, percutaneous pedicle screw placement in the lumbar spine: accuracy rates with 182 consecutive screws. Int J Spine Surg. 2018;12(6):650–658. doi:

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Sawin PD, Traynelis VC, Menezes AH. A comparative analysis of fusion rates and donor-site morbidity for autogeneic rib and iliac crest bone grafts in posterior cervical fusions. J Neurosurg 1998;88(2):255–265. doi:

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Shimokawa N, Takami T. Surgical safety of cervical pedicle screw placement with computer navigation system. Neurosurg Rev 2017;40(2):251–258. doi:

    Article  PubMed  Google Scholar 

  49. 49.

    Shin SI, Yeom JS, Kim HJ, Chang BS, Lee CK, Riew KD. The feasibility of laminar screw placement in the subaxial spine: analysis using 215 three-dimensional computed tomography scans and simulation software. Spine J 2012;12(7):577–584. doi:

    Article  PubMed  Google Scholar 

  50. 50.

    Watts C, Smith H, Knoller N. Risks and cost-effectiveness of sublaminar wiring in posterior fusion of cervical spine trauma. Surg Neurol 1993;40(6):457–460.

    CAS  Article  Google Scholar 

  51. 51.

    White AA, Panjabi, MM. Clinical instability of the spine. In: Evarts CM, Burton RI, Cofield RH, et al. Surgery of the Musculoskeletal System. New York, NY: Churchill Livingstone. 1983. Vol. 4: pp. 219–244.

    Google Scholar 

  52. 52.

    Whitehill R, Stowers SF, Fechner RE, et al. Posterior cervical fusions using cerclage wires, methylmethacrylate cement and autogenous bone graft. An experimental study of a canine model. Spine (Phila Pa 1976). 1987;12(1):12–22.

    CAS  Article  Google Scholar 

  53. 53.

    Xu R, Haman SP, Ebraheim NA, Yeasting RA. The anatomic relation of lateral mass screws to the spinal nerves. A comparison of the Magerl, Anderson, and An techniques. Spine (Phila Pa 1976). 1999;24(19):2057–2061.

    CAS  Article  Google Scholar 

  54. 54.

    Yoshimoto H, Sato S, Hyakumachi T, Yanagibashi Y, Masuda T. Spinal reconstruction using a cervical pedicle screw system. Clin Orthop Relat Res 2005(431):111–119.

    Article  Google Scholar 

  55. 55.

    Yukawa Y, Kato F, Ito K, et al. Placement and complications of cervical pedicle screws in 144 cervical trauma patients using pedicle axis view techniques by fluoroscope. Eur Spine J 2009;18(9):12939. doi:

    Article  Google Scholar 

  56. 56.

    Zhang L, Wang H. Computed tomographic morphometric analysis of lateral inclination C1 pedicle screw for atlantoaxial instability patients with a narrow C1 posterior arch. Kaohsiung J Med Sci 2018;34(12):700–704. doi:

    Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Christopher M. Mikhail MD.

Ethics declarations

Conflict of Interest

Christopher M. Mikhail, MD; James E. Dowdell III, MD; and Andrew C. Hecht, MD, declare that they have no conflicts of interest.

Human/Animal Rights


Informed Consent


Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

IRB Waiver Statement

The authors of this study did not obtain IRB approval as it does not involve human or animal subjects. Therefore, the study poses no potential risk to individuals and contains no identifiable information. The current study is a review of current concepts on the current literature regarding posterior cervical spinal surgery.

Electronic Supplementary Material


(PDF 1224 kb)


(PDF 1224 kb)


(PDF 1224 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikhail, C.M., Dowdell, J.E. & Hecht, A.C. Posterior Fusion for the Subaxial Cervical Spine: A Review of the Major Techniques. HSS Jrnl 16, 188–194 (2020).

Download citation


  • cervical spine
  • spinal fusion
  • cervical myelopathy
  • surgical techniques