HSS Journal

, Volume 6, Issue 1, pp 71–78 | Cite as

Noninvasive Quantitative Assessment of Bone Healing After Distraction Osteogenesis

  • Oladapo M. Babatunde
  • Austin T. Fragomen
  • S. Robert Rozbruch
 

Abstract

One of the greatest challenges of limb lengthening and deformity correction is deciding when the bone has healed enough to remove the external fixator. Standard radiography is the most common imaging method used to assess bone healing after distraction osteogenesis because it is widely available, cheap, and relatively safe. However, other imaging technologies and methods are being investigated that will help quantify bone healing after distraction osteogenesis, providing an objective method for deciding when it is appropriate to remove an external fixator. This review will examine the latest techniques used to assess bone healing after distraction osteogenesis including dual-energy X-ray absorptiometry scans, ultrasound, quantitative computed tomography, and digital radiography (X-ray). Recommendations for clinical practice will be outlined.

Keywords

bone healing quantitative assessment noninvasive distraction osteogenesis callus distraction callotasis osteodistraction 

References

  1. 1.
    Codivilla A (1994) On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. 1904. Clin. Orthop. Relat. Res 301:4–9PubMedGoogle Scholar
  2. 2.
    Bertram C, Nielander KH, Konig DP (1999) Pioneers in the lengthening of the extremities. Chirurg 70 no. 11, 1374–1378CrossRefPubMedGoogle Scholar
  3. 3.
    Birch JG, Samchukov ML (2004) Use of the Ilizarov method to correct lower limb deformities in children and adolescents. J. Am. Acad. Orthop. Surg. 12 no. 3, 144–154PubMedGoogle Scholar
  4. 4.
    Fragomen AT, Rozbruch SR (2007) The mechanics of external fixation. HSS J. 3 no. 1, 13–29CrossRefPubMedGoogle Scholar
  5. 5.
    Marsh DR, Shah S, Elliott J, Kurdy N (1997) The Ilizarov method in nonunion, malunion and infection of fractures. J. Bone Jt. Surg. Br. 79 no. 2, 273–279CrossRefGoogle Scholar
  6. 6.
    Paley D, Herzenberg JE, Paremain G, Bhave A (1997) Femoral lengthening over an intramedullary nail. A matched-case comparison with Ilizarov femoral lengthening. J. Bone Jt. Surg. Am. 79 no. 10, 1464–1480Google Scholar
  7. 7.
    Velazquez RJ, Bell DF, Armstrong PF, Babyn P, Tibshirani R (1993) Complications of use of the Ilizarov technique in the correction of limb deformities in children. J. Bone Jt. Surg. Am 75 no. 8, 1148–1156Google Scholar
  8. 8.
    Cattermole HC, Cook JE, Fordham JN, Muckle DS, Cunningham JL (1997) Bone mineral changes during tibial fracture healing. Clin. Orthop. Relat. Res 339:190–196CrossRefPubMedGoogle Scholar
  9. 9.
    Garcia-Cimbrelo E, Olsen B, Ruiz-Yague M, Fernandez-Baillo N, Munuera-Martinez L (1992) Ilizarov technique. Results and difficulties. Clin. Orthop. Relat. Res. 283:116–123PubMedGoogle Scholar
  10. 10.
    Eldridge JC, Bell DF (1991) Problems with substantial limb lengthening. Orthop. Clin. North Am. 22 no. 4, 625–631PubMedGoogle Scholar
  11. 11.
    Ghoneem HF, Wright JG, Cole WG, Rang M (1996) The Ilizarov method for correction of complex deformities. Psychological and functional outcomes. J. Bone Jt. Surg. Am. 78 no. 10, 1480–1485Google Scholar
  12. 12.
    Ilizarov GA (1990) Clinical application of the tension-stress effect for limb lengthening. Clin. Orthop. Relat. Res. 250:8–26PubMedGoogle Scholar
  13. 13.
    Rozbruch SR, Kleinman D, Fragomen AT, Ilizarov S (2008) Limb lengthening and then insertion of an intramedullary nail: a case-matched comparison. Clin. Orthop. Relat. Res. 466:2923–2932CrossRefPubMedGoogle Scholar
  14. 14.
    Dinah AF (2004) Predicting duration of Ilizarov frame treatment for tibial lengthening. Bone 34 no. 5, 845–848CrossRefPubMedGoogle Scholar
  15. 15.
    Fischgrund J, Paley D, Suter C (1994) Variables affecting time to bone healing during limb lengthening. Clin. Orthop. Relat. Res. 301:31–37PubMedGoogle Scholar
  16. 16.
    Anand A, Feldman DS, Patel RJ, Lehman WB, Bosse HJvan, Badra MI, Sala DA (2006) Interobserver and intraobserver reliability of radiographic evidence of bone healing at osteotomy sites. J. Pediatr. Orthop. B. 15 no. 4, 271–272PubMedGoogle Scholar
  17. 17.
    Starr KA, Fillman R, Raney EM (2004) Reliability of radiographic assessment of distraction osteogenesis site. J. Pediatr. Orthop. 24 no. 1, 26–29PubMedGoogle Scholar
  18. 18.
    Dahl MT, Gulli B, Berg T (1994) Complications of limb lengthening. A learning curve. Clin. Orthop. Relat. Res. 301:10–18PubMedGoogle Scholar
  19. 19.
    Danziger MB, Kumar A, DeWeese J (1995) Fractures after femoral lengthening using the Ilizarov method. J. Pediatr. Orthop. 15 no. 2, 220–223PubMedGoogle Scholar
  20. 20.
    Simpson AH, Kenwright J (2000) Fracture after distraction osteogenesis. J. Bone Jt. Surg. Br. 82 no. 5, 659–665CrossRefGoogle Scholar
  21. 21.
    Aquerreta JD, Forriol F, Canadell J (1994) Complications of bone lengthening. Int. Orthop. 18 no. 5, 299–303CrossRefPubMedGoogle Scholar
  22. 22.
    Forriol F, Iglesias A, Arias M, Aquerreta D, Canadell J (1999) Relationship between radiologic morphology of the bone lengthening formation and its complications. J. Pediatr. Orthop. B. 8 no. 4, 292–298CrossRefPubMedGoogle Scholar
  23. 23.
    Dwyer JS, Owen PJ, Evans GA, Kuiper JH, Richardson JB (1996) Stiffness measurements to assess healing during leg lengthening. A preliminary report. J. Bone Jt. Surg. Br. 78 no. 2, 286–289Google Scholar
  24. 24.
    Richardson JB, Cunningham JL, Goodship AE, O’Connor BT, Kenwright J (1994) Measuring stiffness can define healing of tibial fractures. J. Bone Jt. Surg. Br. 76 no. 3, 389–394Google Scholar
  25. 25.
    Reichel H, Lebek S, Alter C, Hein W (1998) Biomechanical and densitometric bone properties after callus distraction in sheep. Clin. Orthop. Relat. Res. 357:237–246CrossRefPubMedGoogle Scholar
  26. 26.
    Hamanishi C, Yasuwaki Y, Kikuchi H, Tanaka S, Tamura K (1992) Classification of the callus in limb lengthening. Radiographic study of 35 limbs. Acta Orthop. Scand. 63 no. 4, 430–433PubMedGoogle Scholar
  27. 27.
    Tselentakis G, Owen PJ, Richardson JB, Kuiper JH, Haddaway MJ, Dwyer JS, Evans GA (2001) Fracture stiffness in callotasis determined by dual-energy X-ray absorptiometry scanning. J. Pediatr. Orthop. B. 10 no. 3, 248–254CrossRefPubMedGoogle Scholar
  28. 28.
    Chotel F, Braillon P, Sailhan F, Gadeyne S, Gellon JO, Panczer G, Pedrini C, Berard J (2008) Bone stiffness in children: Part II. Objectives criteria for children to assess healing during leg lengthening. J. Pediatr. Orthop 28 no. 5, 538–543PubMedGoogle Scholar
  29. 29.
    Eyres KS, Bell MJ, Kanis JA (1993) Methods of assessing new bone formation during limb lengthening. Ultrasonography, dual energy X-ray absorptiometry and radiography compared. J. Bone Jt. Surg. Br. 75 no. 3, 358–364Google Scholar
  30. 30.
    Eyres KS, Bell MJ, Kanis JA (1993) New bone formation during leg lengthening: evaluated by dual energy X-ray absorptiometry. J. Bone Jt. Surg. Br. 75 no. 1, 96–106Google Scholar
  31. 31.
    Maffulli N, Cheng JC, Sher A, Lam TP (1997) Dual-energy X-ray absorptiometry predicts bone formation in lower limb callotasis lengthening. Ann. R. Coll. Surg. Engl. 79 no. 4, 250–256PubMedGoogle Scholar
  32. 32.
    Reiter A, Sabo D, Pfeil J, Cotta H (1997) Quantitative assessment of callus distraction using dual energy X-ray absorptiometry. Int. Orthop. 21 no. 1, 35–40CrossRefPubMedGoogle Scholar
  33. 33.
    Saran N, Hamdy RC (2008) DEXA as a predictor of fixator removal in distraction osteogenesis. Clin. Orthop. Relat. Res. 466:2955–2961CrossRefPubMedGoogle Scholar
  34. 34.
    Braillon P, Chotel F, Berard J (2008) Limb lengthening: contribution of dual energy X-ray absorptiometry. J. Musculoskelet. Neuronal. Interact. 8 no. 1, 32PubMedGoogle Scholar
  35. 35.
    Young JW, Kostrubiak IS, Resnik CS, Paley D (1990) Sonographic evaluation of bone production at the distraction site in Ilizarov limb-lengthening procedures. AJR. Am. J. Roentgenol. 154 no. 1, 125–128PubMedGoogle Scholar
  36. 36.
    Bail HJ, Kolbeck S, Krummrey G, Weiler A, Windhagen HJ, Hennies K, Raun K, Raschke MJ (2002) Ultrasound can predict regenerate stiffness in distraction osteogenesis. Clin. Orthop. Relat. Res. 404:362–367CrossRefPubMedGoogle Scholar
  37. 37.
    Markel MD, Chao EY (1993) Noninvasive monitoring techniques for quantitative description of callus mineral content and mechanical properties. Clin. Orthop. Relat. Res. 293:37–45PubMedGoogle Scholar
  38. 38.
    Markel MD, Wikenheiser MA, Morin RL, Lewallen DG, Chao EY (1990) Quantification of bone healing. Comparison of QCT, SPA, MRI, and DEXA in dog osteotomies. Acta Orthop. Scand. 61 no. 6, 487–498PubMedCrossRefGoogle Scholar
  39. 39.
    Markel MD, Morin RL, Wikenheiser MA, Robb RA, Chao EY (1991) Multiplanar quantitative computed tomography for bone mineral analysis in dogs. Am. J. Vet. Res. 52 no. 9, 1479–1483PubMedGoogle Scholar
  40. 40.
    Markel MD, Morin RL, Wikenheiser MA, Lewallen DG, Chao EY (1991) Quantitative CT for the evaluation of bone healing. Calcif. Tissue Int. 49 no. 6, 427–432CrossRefPubMedGoogle Scholar
  41. 41.
    Harp JH, Aronson J, Hollis M (1994) Noninvasive determination of bone stiffness for distraction osteogenesis by quantitative computed tomography scans. Clin. Orthop. Relat. Res. 301:42–48PubMedGoogle Scholar
  42. 42.
    Aronson J, Shin HD (2003) Imaging techniques for bone regenerate analysis during distraction osteogenesis. J. Pediatr. Orthop. 23 no. 4, 550–560CrossRefPubMedGoogle Scholar
  43. 43.
    Skaggs DL, Leet AI, Money MD, Shaw BA, Hale JM, Tolo VT (1999) Secondary fractures associated with external fixation in pediatric femur fractures. J. Pediatr. Orthop. 19 no. 5, 582–586CrossRefPubMedGoogle Scholar
  44. 44.
    Kolbeck S, Bail H, Weiler A, Windhagen H, Haas N, Raschke M (1999) Digital radiography. A predictor of regenerate bone stiffness in distraction osteogenesis. Clin. Orthop. Relat. Res. 366:221–228CrossRefPubMedGoogle Scholar
  45. 45.
    Hazra S, Song HR, Biswal S, Lee SH, Lee SH, Jang KM, Modi HN (2008) Quantitative assessment of mineralization in distraction osteogenesis. Skelet. Radiol. 37 no. 9, 843–847CrossRefGoogle Scholar

Copyright information

© Hospital for Special Surgery 2009

Authors and Affiliations

  • Oladapo M. Babatunde
    • 1
  • Austin T. Fragomen
    • 2
  • S. Robert Rozbruch
    • 2
  1. 1.Department of Orthopaedic SurgeryColumbia UniversityNew YorkUSA
  2. 2.Institute for Limb Lengthening and ReconstructionHospital for Special SurgeryNew YorkUSA

Personalised recommendations