HSS Journal

, Volume 5, Issue 2, pp 143–148 | Cite as

Varus Gonarthrosis Predisposes to Varus Malalignment in TKA

  • Thomas J. Heyse
  • Ralf Decking
  • Jack Davis
  • Friedrich Boettner
  • Richard S. Laskin
Original Article


Postoperative alignment is a predictor for long-term survival of total knee arthroplasty (TKA). The purpose of this study was to evaluate whether or not preoperative deformities predispose to intraoperative malposition of TKA components. A retrospective radiographic analysis of 53 primary TKA cases was performed. Preoperative AP hip to ankle and lateral knee radiographs were compared with postoperative views to evaluate component positioning. The following angles were measured: the hip–knee–ankle (HKA) angle expressing the mechanical axis of the leg, the mechanical lateral distal femur angle (mLDFA), the medial proximal tibia angle (MPTA), the posterior distal femur angle (PDFA), and the posterior proximal tibia angle (PPTA). Postoperative measurement of the HKA revealed 34.0% of the cases had a deviation of >±3° from neutral alignment. Sixteen knees (30.2%) were in varus and, with one exception, all presented with severe varus gonarthrosis prior to surgery with a mean tibiofemoral angle of 12.4° compared with 1.0° of valgus in the optimally aligned group. Patients (93.3%) with preoperative valgus malalignment showed optimal postoperative HKA. Odds ratios for malalignment of TKA for varus knees in comparison with valgus knees were 7.1 for HKA, 2.4 for MPTA, 4.9 for PDFA, and 1.7 for PPTA. The overall number of outliers in the presented data corresponds well with reports from other authors using different implants and guide systems. The presented data indicate that patients with preoperative varus alignment have a higher risk of postoperative implant malposition than patients with valgus alignment. The data supports that preoperative varus deformity predisposes to varus malposition of TKA. The risk for intraoperative malposition is significantly lower in valgus knees.





Hip–ankle intersection


Hip–knee–ankle angle


Mechanical lateral distal femur angle


Medial proximal tibia angle


Posterior distal femur angle


Posterior proximal tibia angle




Total knee arthroplasty


  1. 1.
    Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J. Bone Joint Surg. Br 73(5):709–714PubMedGoogle Scholar
  2. 2.
    Rand JA, Coventry MB, Ten-year evaluation of geometric total knee arthroplasty. Clin. Orthop. Relat. Res. 1988; (232): 168–173Google Scholar
  3. 3.
    Pagnano M, Trousdale R, Berry D, Parratte S The mechanical axis may be the wrong target in computer-assisted TKA. San Francisco: AAOS; 2008Google Scholar
  4. 4.
    Windsor RE, Scuderi GR, Moran MC, Insall JN, Mechanisms of failure of the femoral and tibial components in total knee arthroplasty. Clin. Orthop. Relat. Res. 1989; (248): 15–19. discussion 19–20Google Scholar
  5. 5.
    Laskin RS (1990) Total condylar knee replacement in patients who have rheumatoid arthritis. A ten-year follow-up study. J. Bone Joint Surg. Am 72(4):529–535PubMedGoogle Scholar
  6. 6.
    Bargren JH, Blaha JD, Freeman MA, Alignment in total knee arthroplasty. Correlated biomechanical and clinical observations. Clin. Orthop. Relat. Res. 1983; (173): 178–183Google Scholar
  7. 7.
    Insall JN, Binazzi R, Soudry M, Mestriner LA, Total knee arthroplasty. Clin. Orthop. Relat. Res. 1985; (192): 13–22Google Scholar
  8. 8.
    Tew M, Waugh W (1985) Tibiofemoral alignment and the results of knee replacement. J. Bone Joint Surg. Br 67(4):551–556PubMedGoogle Scholar
  9. 9.
    Ritter MA, Faris PM, Keating EM, Meding JB, Postoperative alignment of total knee replacement. Its effect on survival. Clin. Orthop. Relat. Res. 1994; (299): 153–156Google Scholar
  10. 10.
    Hvid I, Nielsen S (1984) Total condylar knee arthroplasty. Prosthetic component positioning and radiolucent lines. Acta. Orthop. Scand 55(2):160–165PubMedCrossRefGoogle Scholar
  11. 11.
    Hsu RW, Himeno S, Coventry MB, Chao EY, Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin. Orthop. Relat. Res. 1990; (255): 215–227Google Scholar
  12. 12.
    Bathis H, Perlick L, Tingart M, Luring C, Zurakowski D, Grifka J (2004) Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J. Bone Joint Surg. Br 86(5):682–687PubMedCrossRefGoogle Scholar
  13. 13.
    Decking R, Markmann Y, Fuchs J, Puhl W, Scharf HP (2005) Leg axis after computer-navigated total knee arthroplasty: a prospective randomized trial comparing computer-navigated and manual implantation. J. Arthroplasty. 20(3):282–288PubMedCrossRefGoogle Scholar
  14. 14.
    Ahlback S (1968) Osteoarthrosis of the knee. A radiographic investigation. Acta. Radiol. Diagn. (Stockh) 277:7–72 SupplGoogle Scholar
  15. 15.
    Maquet P (1972) [Biomechanics of gonarthrosis]. Acta. Orthop. Belg 38(Suppl 1):33–54PubMedGoogle Scholar
  16. 16.
    Elloy MA, Manning MP, Johnson R (1992) Accuracy of intramedullary alignment in total knee replacement. J. Biomed. Eng 14(5):363–370PubMedCrossRefGoogle Scholar
  17. 17.
    Oswald MH, Jakob RP, Schneider E, Hoogewoud HM (1993) Radiological analysis of normal axial alignment of femur and tibia in view of total knee arthroplasty. J. Arthroplasty 8(4):419–426PubMedCrossRefGoogle Scholar
  18. 18.
    Wright JG, Treble N, Feinstein AR (1991) Measurement of lower limb alignment using long radiographs. J. Bone Joint Surg. Br 73(5):721–723PubMedGoogle Scholar
  19. 19.
    Petersen TL, Engh GA (1988) Radiographic assessment of knee alignment after total knee arthroplasty. J. Arthroplasty 3(1):67–72PubMedCrossRefGoogle Scholar
  20. 20.
    Mahaluxmivala J, Bankes MJ, Nicolai P, Aldam CH, Allen PW (2001) The effect of surgeon experience on component positioning in 673 Press Fit Condylar posterior cruciate-sacrificing total knee arthroplasties. J. Arthroplasty 16(5):635–640PubMedCrossRefGoogle Scholar
  21. 21.
    Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K (2007) Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J. Arthroplasty 22(8):1097–1106PubMedCrossRefGoogle Scholar
  22. 22.
    Ishii Y, Ohmori G, Bechtold JE, Gustilo RB, Extramedullary versus intramedullary alignment guides in total knee arthroplasty. Clin. Orthop. Relat. Res. 1995; (318): 167–175Google Scholar
  23. 23.
    Teter KE, Bregman D, Colwell CW, Jr., Accuracy of intramedullary versus extramedullary tibial alignment cutting systems in total knee arthroplasty. Clin. Orthop. Relat. Res. 1995; (321): 106–110Google Scholar
  24. 24.
    Dennis DA, Channer M, Susman MH, Stringer EA (1993) Intramedullary versus extramedullary tibial alignment systems in total knee arthroplasty. J. Arthroplasty 8(1):43–47PubMedCrossRefGoogle Scholar
  25. 25.
    Patel DV, Ferris BD, Aichroth PM (1991) Radiological study of alignment after total knee replacement. Short radiographs or long radiographs. Int. Orthop 15(3):209–210PubMedGoogle Scholar
  26. 26.
    Teter KE, Bregman D, Colwell CW, Jr., The efficacy of intramedullary femoral alignment in total knee replacement. Clin. Orthop. Relat. Res. 1995; (321): 117–121Google Scholar

Copyright information

© Hospital for Special Surgery 2009

Authors and Affiliations

  • Thomas J. Heyse
    • 1
  • Ralf Decking
    • 2
  • Jack Davis
    • 3
  • Friedrich Boettner
    • 3
  • Richard S. Laskin
    • 3
  1. 1.Department of Orthopedics and RheumatologyUniversity Hospital MarburgMarburgGermany
  2. 2.Department of OrthopedicsUniversity Hospital UlmUlmGermany
  3. 3.Adult Reconstruction & Joint Replacement DivisionHospital for Special SurgeryNew YorkUSA

Personalised recommendations