HSS Journal

, Volume 4, Issue 1, pp 10–13 | Cite as

Early Dislocation Rate in Ceramic-on-Ceramic Total Hip Arthroplasty

  • Kenny Mai
  • Mary E. Hardwick
  • Richard H. Walker
  • Steven N. Copp
  • Kace A. Ezzet
  • Clifford W. ColwellJr.
Original Article


Wear debris from metal-on-polyethylene articulation in conventional total hip arthroplasty (THA) may limit THA longevity. Bearing surfaces made of modern ceramic material, with high wear resistance and low fracture risk, have the potential to extend the longevity of THA and make the procedure more suitable for young, active patients. Concerns regarding a ceramic-on-ceramic bearing surface have included potential for a higher incidence of dislocation caused by limited modular neck length and liner options. This prospective study assessed the early dislocation incidence for a ceramic-on-ceramic THA system. Out of the 336 consecutive ceramic-on-ceramic THA performed at our institution over an 8-year (1997–2005) period, 2 (0.6%) sustained dislocation during, and none after, the first postoperative year. Both dislocations were treated with closed reduction. No component fracture or revision for any reason has occurred in this series.

Key words

total hip arthroplasty dislocation ceramic-on-ceramic 


  1. 1.
    Jacobs JJ, Shanbhag A, Glant TT, et al (1994) Wear debris in total joint replacements. J Am Acad Orthop Surg 2:212–220PubMedGoogle Scholar
  2. 2.
    Barrack RL, Burak C, Skinner HB (2004) Concerns about ceramics in THA. Clin Orthop Relat Res 429:73–79PubMedCrossRefGoogle Scholar
  3. 3.
    Phillips CB, Barrett JA, Losina E, et al (2003) Incidence rates of dislocation, pulmonary embolism, and deep infection during the first six months after elective total hip replacement. J Bone Joint Surg Am 85:20–26PubMedCrossRefGoogle Scholar
  4. 4.
    Katz JN, Losina E, Barrett J, et al (2001) Association between hospital and surgeon procedure volume and outcomes of total hip replacement in the United States medicare population. J Bone Joint Surg Am 83:1622–1629PubMedCrossRefGoogle Scholar
  5. 5.
    Garino JP (2000) Modern ceramic-on-ceramic total hip systems in the United States: early results. Clin Orthop Relat Res 379:41–47PubMedCrossRefGoogle Scholar
  6. 6.
    Woo RY, Morrey BF (1982) Dislocations after total hip arthroplasty. J Bone Joint Surg Am 64:1295–1306PubMedGoogle Scholar
  7. 7.
    Mihalko WM, Whiteside LA (2004) Hip mechanics after posterior structure repair in total hip arthroplasty. Clin Orthop Relat Res 420:194–198PubMedCrossRefGoogle Scholar
  8. 8.
    Weeden SH, Paprosky WG, Bowling JW (2003) The early dislocation rate in primary total hip arthroplasty following the posterior approach with posterior soft-tissue repair. J Arthroplast 18:709–713CrossRefGoogle Scholar
  9. 9.
    Boutin P (2000) Total hip arthroplasty using a ceramic prosthesis. Pierre Boutin (1924–1989). Clin Orthop Relat Res 379:3–11PubMedCrossRefGoogle Scholar
  10. 10.
    Hamadouche M, Boutin P, Daussange J, et al (2002) Alumina-on-alumina total hip arthroplasty: a minimum 18.5-year follow-up study. J Bone Joint Surg Am 84:69–77PubMedGoogle Scholar
  11. 11.
    D’Antonio J, Capello W, Manley M, et al. (2005) Alumina ceramic bearings for total hip arthroplasty: five-year results of a prospective randomized study. Clin Orthop Relat Res 436:164–171PubMedCrossRefGoogle Scholar
  12. 12.
    Hannouche D, Hamadouche M, Nizard R, et al. (2005) Ceramics in total hip replacement. Clin Orthop Relat Res 430:62–71PubMedCrossRefGoogle Scholar
  13. 13.
    Sedel L (2000) Evolution of alumina-on-alumina implants: a review. Clin Orthop Relat Res 379:48–54PubMedCrossRefGoogle Scholar
  14. 14.
    Heros R, Willmann G (1998) Ceramics in total hip arthroplasty: history, mechanical properties, clinical results, and current manufacturing state of the art. Semin Arthroplasty 9:114–122Google Scholar
  15. 15.
    Willmann G (2000) Ceramic femoral head retrieval data. Clin Orthop Relat Res 379:22–28PubMedCrossRefGoogle Scholar
  16. 16.
    Pellicci PM, Bostrom M, Poss R (1998) Posterior approach to total hip replacement using enhanced posterior soft tissue repair. Clin Orthop Relat Res 335:224–228CrossRefGoogle Scholar
  17. 17.
    White RE, Jr, Forness TJ, Allman JK, et al (2001) Effect of posterior capsular repair on early dislocation in primary total hip replacement. Clin Orthop Relat Res 393:163–167PubMedCrossRefGoogle Scholar
  18. 18.
    Berry DJ, von Knoch M, Schleck CD, et al (2005) Effect of femoral head diameter and operative approach on risk of dislocation after primary total hip arthroplasty. J Bone Joint Surg Am 87:2456–2463PubMedCrossRefGoogle Scholar
  19. 19.
    Bartz RL, Nobel PC, Kadakia NR, et al (2000) The effect of femoral component head size on posterior dislocation of the artificial hip joint. J Bone Joint Surg Am 82:1300–1307PubMedGoogle Scholar
  20. 20.
    Chandler DR, Glousman R, Hull D, et al (1982) Prosthetic hip range of motion and impingement. The effects of head and neck geometry. Clin Orthop Relat Res 166:284–291PubMedGoogle Scholar
  21. 21.
    Khatod M, Barber T, Paxton E, et al (2006) An analysis of the risk of hip dislocation with a contemporary total joint registry. Clin Orthop Relat Res 447:19–23PubMedCrossRefGoogle Scholar
  22. 22.
    Fisher J, Jin Z, Tipper J, et al (2006) Tribology of alternative bearings. Clin Orthop Relat Res 453:25–34PubMedCrossRefGoogle Scholar

Copyright information

© Hospital for Special Surgery 2007

Authors and Affiliations

  • Kenny Mai
    • 1
  • Mary E. Hardwick
    • 2
  • Richard H. Walker
    • 1
  • Steven N. Copp
    • 1
  • Kace A. Ezzet
    • 1
  • Clifford W. ColwellJr.
    • 1
    • 2
  1. 1.Division of OrthopaedicsScripps ClinicLa JollaUSA
  2. 2.Shiley Center for Orthopaedic Research and EducationScripps ClinicLa JollaUSA

Personalised recommendations