HSS Journal

, Volume 3, Issue 2, pp 164–168 | Cite as

Dynamics of an Intervertebral Disc Prosthesis in Human Cadaveric Spines

  • Kathleen N. Meyers
  • Deirdre A. Campbell
  • Joseph D. Lipman
  • Kai Zhang
  • Elizabeth R. Myers
  • Federico P. Girardi
  • Frank P. Cammisa
  • Timothy M. Wright
Original Article


Low-back pain is a common, disabling medical condition, and one of the major causes is disc degeneration. Total disc replacements are intended to treat back pain by restoring disc height and re-establishing functional motion and stability at the index level. The objective of this study was to determine the effect on range of motion (ROM) and stiffness after implantation of the ProDisc®-L device in comparison to the intact state. Twelve L5–S1 lumbar spine segments were tested in flexion/extension, lateral bending, and axial rotation with axial compressive loads of 600 N and 1,200 N. Specimens were tested in the intact state and after implantation with the ProDisc®-L device. ROM was not significantly different in the implanted spines when compared to their intact state in flexion/extension and axial rotation but increased in lateral bending. Increased compressive load did not affect ROM in flexion/extension or axial rotation but did result in decreased ROM in lateral bending and increased stiffness in both intact and implanted spine segments. The ProDisc®-L successfully restored or maintained normal spine segment motion.

Key words

total disc replacement biomechanics lumbar spine ProDisc®-L 


  1. 1.
    Kozak JA, O’Brien JP (1990) Simultaneous combined anterior and posterior fusion. An independent analysis of a treatment for the disabled low-back pain patient. Spine 15:322–328PubMedCrossRefGoogle Scholar
  2. 2.
    Linson MA, Williams H (1991) Anterior and combined anteroposterior fusion for lumbar disc pain. A preliminary study. Spine 16:143–145PubMedGoogle Scholar
  3. 3.
    Moore KR, Pinto MR, Butler LM (2002) Degenerative disc disease treated with combined anterior and posterior arthrodesis and posterior instrumentation. Spine 27:1680–1686PubMedCrossRefGoogle Scholar
  4. 4.
    Danielsson AJ, Cederlund CG, Ekholm S et al (2001) The prevalence of disc aging and back pain after fusion extending into the lower lumbar spine. A matched MR study twenty-five years after surgery for adolescent idiopathic scoliosis. Acta Radiol 42:187–197PubMedGoogle Scholar
  5. 5.
    Kumar MN, Baklanov A, Chopin D (2001) Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 10:314–319PubMedCrossRefGoogle Scholar
  6. 6.
    Kumar MN, Jacquot F, Hall H (2001) Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease. Eur Spine J 10:309–313PubMedCrossRefGoogle Scholar
  7. 7.
    Lee CK (1988) Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 13:375–377PubMedCrossRefGoogle Scholar
  8. 8.
    Aota Y, Kumano K, Hirabayashi S (1995) Postfusion instability at the adjacent segments after rigid pedicle screw fixation for degenerative lumbar spinal disorders. J Spinal Disord 8:464–473PubMedCrossRefGoogle Scholar
  9. 9.
    Brunet JA, Wiley JJ (1984) Acquired spondylolysis after spinal fusion. J Bone Jt Surg Br 66:720–724Google Scholar
  10. 10.
    Etebar S, Cahill DW (1999) Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg 90:163–169PubMedGoogle Scholar
  11. 11.
    Penta M, Sandhu A, Fraser RD (1995) Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine 20:743–747PubMedCrossRefGoogle Scholar
  12. 12.
    Rahm MD, Hall BB (1996) Adjacent-segment degeneration after lumbar fusion with instrumentation: a retrospective study. J Spinal Disord 9:392–400PubMedCrossRefGoogle Scholar
  13. 13.
    Schlegel JD, Smith JA, Schleusener RL (1996) Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine 21:970–981PubMedCrossRefGoogle Scholar
  14. 14.
    Janevic J, Ashton-Miller JA, Schultz AB (1991) Large compressive preloads decrease lumbar motion segment flexibility. J Orthoptera Res 9:228–236CrossRefGoogle Scholar
  15. 15.
    Cunningham BW, Gordon JD, Dmitriev AE et al (2003) Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Spine 28:110–117PubMedCrossRefGoogle Scholar
  16. 16.
    Hitchon PW, Eichholz K, Barry C et al (2005) Biomechanical studies of an artificial disc implant in the human cadaveric spine. J Neurosurg Spine 2:339–343PubMedCrossRefGoogle Scholar
  17. 17.
    Cinotti G, David T, Postacchini F (1996) Results of disc prosthesis after a minimum follow-up period of 2 years. Spine 2:1995–1000PubMedCrossRefGoogle Scholar
  18. 18.
    Delamarter RB, Fribourg DM, Kanim LE et al (2003) ProDisc artificial total lumbar disc replacement: introduction and early results from the United States clinical trial. Spine 28:167–175PubMedCrossRefGoogle Scholar
  19. 19.
    Le Huec JC, Mathews H, Basso Y et al (2005) Clinical results of Maverick lumbar total disc replacement: two-year prospective follow-up. Orthop Clin North Am 36:315–322PubMedCrossRefGoogle Scholar
  20. 20.
    Lemaire JP, Skalli W, Lavaste F et al (1997) Intervertebral disc prosthesis. Results and prospects for the year 2000. Clin Orthop Relat Res 64–76Google Scholar
  21. 21.
    Tropiano P, Huang RC, Girardi FP et al (2005) Lumbar total disc replacement. Seven to eleven-year follow-up. J Bone Jt Surg Am 87:490–496CrossRefGoogle Scholar
  22. 22.
    Rousseau MA, Bradford DS, Bertagnoli R et al (2006) Disc arthroplasty design influences intervertebral kinematics and facet forces. Spine J 6:258–266PubMedCrossRefGoogle Scholar
  23. 23.
    White AA III, Panjabi MM (1990) Clinical biomechanics of the spine. Lippincott: PhiladelphiaGoogle Scholar
  24. 24.
    Patwardhan AG, Havey RM, Carandang G et al (2003) Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. J Orthop Res 21:540–546PubMedCrossRefGoogle Scholar
  25. 25.
    Gardner-Morse MG, Stokes IA (2003) Physiological axial compressive preloads increase motion segment stiffness, linearity and hysteresis in all six degrees of freedom for small displacements about the neutral posture. J Orthop Res 21:547–552PubMedCrossRefGoogle Scholar
  26. 26.
    Gardner-Morse MG, Stokes IA (2004) Structural behavior of human lumbar spinal motion segments. J Biomech 37:205–212PubMedCrossRefGoogle Scholar
  27. 27.
    Tawackoli W, Marco R, Liebschner MA (2004) The effect of compressive axial preload on the flexibility of the thoracolumbar spine. Spine 29:988–993PubMedCrossRefGoogle Scholar
  28. 28.
    Bertagnoli R, Kumar S (2002) Indications for full prosthetic disc arthroplasty: a correlation of clinical outcome against a variety of indications. Eur Spine J 11(Suppl 2):131–136PubMedGoogle Scholar
  29. 29.
    Huang RC, Girardi FP, Cammisa FP Jr et al (2003) Long-term flexion–extension range of motion of the prodisc total disc replacement. J Spinal Disord Tech 16:435–440PubMedCrossRefGoogle Scholar

Copyright information

© Hospital for Special Surgery 2007

Authors and Affiliations

  • Kathleen N. Meyers
    • 1
  • Deirdre A. Campbell
    • 1
  • Joseph D. Lipman
    • 1
  • Kai Zhang
    • 2
  • Elizabeth R. Myers
    • 1
  • Federico P. Girardi
    • 2
  • Frank P. Cammisa
    • 2
  • Timothy M. Wright
    • 1
  1. 1.Department of Biomedical Mechanics and MaterialsHospital for Special SurgeryNew YorkUSA
  2. 2.Spine Surgery, Spine ServiceHospital for Special SurgeryNew YorkUSA

Personalised recommendations