The Mechanics of External Fixation

Abstract

External fixation has evolved from being used primarily as a last resort fixation method to becoming a main stream technique used to treat a myriad of bone and soft tissue pathologies. Techniques in limb reconstruction continue to advance largely as a result of the use of these external devices. A thorough understanding of the biomechanical principles of external fixation is useful for all orthopedic surgeons as most will have to occasionally mount a fixator throughout their career. In this review, various types of external fixators and their common clinical applications are described with a focus on unilateral and circular frames. The biomechanical principles that govern bony and fixator stability are reviewed as well as the recommended techniques for applying external fixators to maximize stability. Additionally, we have illustrated methods for managing patients while they are in the external frames to facilitate function and shorten treatment duration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. 1.

    Behrens F (1989) General theories and principles of external fixation. Clin Orthop 241:15–23

    PubMed  Google Scholar 

  2. 2.

    Claes L, Heitemeyer U, Krischak G, et al. (1999) Fixation technique influences osteogenesis of comminuted fractures. Clin Orthop 365:221–229

    PubMed  Article  Google Scholar 

  3. 3.

    Rozbruch SR, Ilizarov S, Blyakher A (2005) Knee arthrodesis with simultaneous lengthening using the Ilizarov method. J Orthop Trauma 19:171–179

    PubMed  Article  Google Scholar 

  4. 4.

    Behrens F, Searls K (1986) External fixation of the tibia. Basic concepts and prospective evaluation. J Bone Joint Surg Br 62:246–254

    Google Scholar 

  5. 5.

    Behrens F, Johnson WD, Koch TW, Kovacevic N (1983) Bending stiffness of unilateral and bilateral fixation frames. Clin Orthop 178:103–110

    PubMed  Google Scholar 

  6. 6.

    Gasser B, Boman B, Wyder D, et al (1990) Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixators. J Biomech Eng 112:15–21

    PubMed  CAS  Google Scholar 

  7. 7.

    Ilizarov GA (1992) The Apparatus: components and biomechanical principles of application. In: Green S (Ed) Transosseus osteosynthesis. Theoretical and clinical aspects of the regeneration and growth of tissue. Springer-Verlag Berlin, pp 63–136

  8. 8.

    Duda GN, Kassi JP, Hoffman JE, et al (2000) Mechanical behavior of Ilizarov ring fixators. Effect of frame parameters on stiffness and consequences for clinical use. Unfallchirurgie 103:839–845

    Article  CAS  Google Scholar 

  9. 9.

    Cross AR, Lewis DD, Murphy ST, et al (2001) Effects of ring diameter and wire tension on the axial biomechanics of four-ring circular external fixator constructs. Am J Vet Res 62:1025–1030

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Podolsky A, Chao EY (1993) Mechanical performance of Ilizarov circular external fixators in comparison with other external fixators. Clin Orthop 293:61–70

    PubMed  Google Scholar 

  11. 11.

    Flemming B, Paley D, Kristiansen T, et al (1989) A biomechanical analysis of the Ilizarov external fixator. Clin Orthop 241:95–105

    Google Scholar 

  12. 12.

    Sarpel Y, Gulsen M, Togrul E, et al (2005) Comparison of mechanical performance among different frame configurations of the Ilizarov external fixator: experimental study. J Trauma 58:546–552

    PubMed  Article  Google Scholar 

  13. 13.

    Antoci V, Roberts CS, Antoci V Jr, et al (2005) The effect of transfixion wire number and spacing between two levels of fixation on the stiffness of proximal tibial external fixation. J Orthop Trauma 19:180–186

    PubMed  Article  Google Scholar 

  14. 14.

    Goodship AE, Watkins PE, Rigby HS, et al (1993) The role of rigid frame stiffness in the control of fracture healing. An experimental study. J Biomech 26:1027–1035

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Kenwright J, Richardson JB, Cunningham JL, et al (1991) Axial movement and tibial fractures. A controlled randomized trial of treatment. J Bone Joint Surg Br 73:654–659

    PubMed  CAS  Google Scholar 

  16. 16.

    Paley D, Fleming B, Catagni M, et al (1990) Mechanical evaluation of external fixators used in limb lengthening. Clin Orthop 250:50–57

    PubMed  Google Scholar 

  17. 17.

    Yang L, Nayagam S, Saleh M (2003) Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators. Clin Biomech 18:166–172

    Article  Google Scholar 

  18. 18.

    Calhoun JH, Li F, Bauford WL, et al (1992) Rigidity of half pins for the Ilizarov external fixator. Bull Hosp Jt Dis 52:21–26

    PubMed  CAS  Google Scholar 

  19. 19.

    Rozbruch SR, Helfet DL, Blyakher A (2002) Distraction of hypertrophic nonunion of tibia with deformity using Ilizarov/Taylor spatial frame. Arch Orthop Trauma Surg 122:295–298

    PubMed  Article  Google Scholar 

  20. 20.

    Rozbruch SR, Weitzman AM, Watson JT, et al (2006) Simultaneous treatment of tibial bone and soft-tissue defects with the Ilizarov method. J Orthop Trauma 20(3):194–202

    Article  Google Scholar 

  21. 21.

    Orbay GL, Frankel VH, Kummer FJ (1992) The effect of wire configuration on the stability of the Ilizarov external fixator. Clin Orthop 279:299–302

    PubMed  Google Scholar 

  22. 22.

    Calhoun JH, Ledbetter BR, Gill CA (1992) Biomechanics of the Ilizarov fixator for fracture fixation. Clin Orthop 280:15–22

    PubMed  Google Scholar 

  23. 23.

    Roberts CS, Antoci V, Antoci V Jr, et al (2005) The effect of transfixion wire crossing angle on the stiffness of fine wire external fixation: a biomechanical study. Injury 36(9):1107–1112

    PubMed  Article  Google Scholar 

  24. 24.

    Ilizarov GA, Emilyanova HS, Lebedev BE, et al (1772) Some experimental studies. Mechanical characteristics of Kirsherner wires. In: Perosseus compression and distraction osteosynthesis in traumatology and orthopedics. Kurgan, pp 34–47

  25. 25.

    Caja VL, Piza G, Navarro A (2003) Hydroxyapatite coating of external fixation pins decrease axial deformity during tibial lengthening for short stature. J Bone Jt Surg Am 85:1527–1531

    Google Scholar 

  26. 26.

    Moroni A, Vannini F, Mosca M, et al (2002) State of the art review: techniques to avoid pin loosening and infection in external fixation. J Orthop Trauma 16:189–195

    PubMed  Article  Google Scholar 

  27. 27.

    Piza G, Caja VL, Gonzalez-Viejo MA, et al (2004) Hydroxyapatite-coated external-fixation pins. The effect on pin loosening and pin-tract infection in lengthening for short stature. J Bone Jt Surg Br 86:892–897

    Article  CAS  Google Scholar 

  28. 28.

    Pommer A, Muhr G, David A (2002) Hydroxyapatite-coated Schantz pins in external fixators for distraction osteogenesis: a randomized, controlled trial. J Bone Jt Surg Am 84:1162–1166

    Article  Google Scholar 

  29. 29.

    Moroni A, Faldini C, Pegreffi F, et al (2002) Fixation strength of tapered versus bicylindrical hydroxyapatite-coated external fixation pins: an animal study. J Biomed Mater Res 63:61–64

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Sarmiento A, Schaeffer JF, Beckerman L, et al (1977) Fracture healing in rat femora as affected by functional weight-bearing. J Bone Jt Surg Am 59:369–375

    CAS  Google Scholar 

  31. 31.

    Klein P, Schell H, Streitparth F, et al (2003) The initial phase of fracture healing is specifically sensitive to mechanical conditions. J Orthop Res 21:662–669

    PubMed  Article  Google Scholar 

  32. 32.

    Herzenberg JE, Davis JR, Paley D, et al (1994) Mechanical distraction for treatment of severe knee flexion contractures. Clin Orthop Relat Res 301:80–88

    PubMed  Google Scholar 

  33. 33.

    Huang SC (1996) Soft tissue contractures of the knee or ankle treated by the Ilizarov technique. High recurrence rate in 26 patients followed for 3–6 years. Acta Orthop Scand 67(5):443–449

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Carmichael KD, Maxwell SC, Calhoun JH (2005) Recurrence rates of burn contracture ankle equines and other foot deformities in children treated with Ilizarov fixation. J Pediatric Orthop 25(4):523–528

    Article  Google Scholar 

  35. 35.

    Aarnes GT, Steen H, Ludvigsen P, et al (2005) In vivo assessment of regenerate axial stiffness in distraction osteogenesis. J Orthop Res 23:494–498

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Austin T. Fragomen MD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fragomen, A.T., Rozbruch, S.R. The Mechanics of External Fixation. HSS Jrnl 3, 13–29 (2007). https://doi.org/10.1007/s11420-006-9025-0

Download citation

Key words

  • Ilizarov reconstruction
  • external fixation
  • biomechanics
  • trauma
  • deformity
  • limb lengthening