Skip to main content

Identification of five mitragyna alkaloids in blood and tissues using liquid chromatography-quadrupole/time-of-flight mass spectrometry



Kratom is a botanical drug with psychoactive properties that is increasingly being used recreationally and “therapeutically” in a non-medically supervised setting. Analytical methods for the detection of kratom use in biological matrices are limited in scope. Prevalence of these alkaloids and their metabolites in forensic specimens is not well understood. The purpose of this study was to develop and validate a procedure to identify five Mitragyna alkaloids in blood and tissues using liquid chromatography quadrupole time–of–flight mass spectrometry (LC–Q/TOF–MS).


Mitragynine (MG), speciociliatine (SC), paynantheine (PY), speciogynine (SG) and 7-hydroxymitragynine (7-MG-OH) were identified in postmortem blood (n = 40) and liver specimens (n = 20). Mitragyna alkaloids were determined quantitatively using targeted acquisition and metabolites were identified qualitatively using full scan (untargeted) acquisition.


The analytical procedure was validated in accordance with published recommendations. Limits of quantitation were 0.5–2 ng/mL for the five targeted alkaloids. Precision, bias, and matrix effects were all within acceptable thresholds. Concentrations of MG in central and peripheral blood were 1–422 ng/mL and 1–412 ng/mL. Liver concentrations of MG ranged from < 4 to > 1450 ng/g. Metabolites of MG (7-MG-OH, 9-O-demethylmitragynine and 16-carboxymitragynine) were also identified in postmortem blood with 7-MG-OH being identified in at least 95% of cases. Interestingly, SC concentrations were frequently identified in excess of MG concentrations.


A validated LC–Q/TOF–MS method for the analysis of five Mitragyna alkaloids is described. In addition, minor Mitragyna alkaloids and metabolites can serve as biomarkers of kratom use in blood and tissues.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Papsun DM, Chan-Hosokawa A, Friederich L, Brower J, Graf K, Logan B (2019) The trouble with kratom: analytical and interpretative issues involving mitragynine. J Anal Toxicol 43:615

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Hassan Z, Muzaimi M, Navaratnam V, Yusoff NHM, Suhaimi FW, Vadivelu R et al (2013) From kratom to mitragynine and its derivatives: physiological and behavioural effects related to use, abuse, and addiction. Neurosci Biobehav Rev 37:138–151

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Kruegel AC, Filizola M, Gassaway MM, Javitch JA, Kapoor A, Majumdar S et al (2016) Synthetic and receptor signaling explorations of the mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J Am Chem Soc 138:6754–6764

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Matsumoto K, Mizowaki M, Takayama H, Sakai S, Aimi N, Watanabe H (1997) Suppressive effect of mitragynine on the 5-methoxy-N, N-dimethyltryptamine-induced head-twitch response in mice. Pharmacol Biochem Behav 57:319–323

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Corkery JM, Streete P, Claridge H, Goodair C, Papanti D, Orsolini L, Schifano F, Sikka K, Körber S, Hendricks A (2019) Characteristics of deaths associated with kratom use. J Psychopharmacol 33:1102

    PubMed  Article  Google Scholar 

  6. 6.

    Swogger MT, Hart E, Erowid F, Erowid E, Trabold N, Yee K, Parkhurst KA, Priddy BM, Walsh Z (2015) Experiences of kratom users: a qualitative analysis. J Psychoact Drugs 47:360–367

    Article  Google Scholar 

  7. 7.

    Ward J, Rosenbaum C, Hernon C, McCurdy CR, Boyer EW (2011) Herbal medicines for the management of opioid addiction. CNS Drugs 25:999–1007

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Singh D, Müller CP, Vicknasingam BK (2014) Kratom (mitragyna speciosa) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend 139:132–137

    PubMed  Article  Google Scholar 

  9. 9.

    Saingam D, Assanangkornchai S, Geater AF, Balthip Q (2013) Pattern and consequences of krathom (mitragyna speciosa korth.) use among male villagers in southern Thailand: a qualitative study. Int J Drug Policy 24:351–358

    PubMed  Article  Google Scholar 

  10. 10.

    Prozialeck W, Jivan J, Andurkar S (2012) Pharmacology of kratom: an emerging botanical agent with stimulant, analgesic and opioid-like effects. J Am Osteopath Assoc 112:792–799

    PubMed  Google Scholar 

  11. 11.

    Grewal K (1932) The effect of mitragynine on man. Br J Med Psychol 12:41–58

    Article  Google Scholar 

  12. 12.

    McWhirter L, Morris S (2010) A case report of inpatient detoxification after kratom (mitragyna speciosa) dependence. Eur Addict Res 16:229–231

    PubMed  Article  Google Scholar 

  13. 13.

    Jansen KLR, Prast CJ (1988) Ethnopharmacology of kratom and the mitragyna alkaloids. J Ethnopharmacol 23:115–119

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Nelsen JL, Lapoint J, Hodgman MJ, Aldous KM (2010) Seizure and coma following kratom (mitragynina speciosa korth) exposure. J Med Toxicol 6:424–426

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Sheleg SV, Collins GB (2011) A coincidence of addiction to “kratom” and severe primary hypothyroidism. J Addict Med 5:300–301

    PubMed  Article  Google Scholar 

  16. 16.

    Sabetghadam A, Ramanathan S, Sasidharan S, Mansor SM (2013) Subchronic exposure to mitragynine, the principal alkaloid of mitragyna speciosa, in rats. J Ethnopharmacol 146:815–823

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Osborne CS, Overstreet AN, Rockey DC, Schreiner AD (2019) Drug-induced liver injury caused by kratom use as an alternative pain treatment amid an ongoing opioid epidemic. J Investig Med High Impact Case Rep 7:2324709619826167

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Pantano F, Tittarelli R, Mannocchi G, Zaami S, Ricci S, Giorgetti R, Terranova D, Busardò FP, Marinelli E (2016) Hepatotoxicity induced by “the 3ks”: kava, kratom and khat. Int J Mol Sci 17:580

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Harizal SN, Mansor SM, Hasnan J, Tharakan JKJ, Abdullah J (2010) Acute toxicity study of the standardized methanolic extract of mitragyna speciosa korth in rodent. J Ethnopharmacol 131:404–409

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    McIntyre IM, Trochta A, Stolberg S, Campman SC (2014) Mitragynine ‘kratom’ related fatality: a case report with postmortem concentrations. J Anal Toxicol 39:152–155

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Neerman MF, Frost RE, Deking J (2013) A drug fatality involving kratom. J Forensic Sci 58:S278–S279

    PubMed  Article  Google Scholar 

  22. 22.

    Aggarwal G, Robertson E, McKinlay J, Walter E (2018) Death from kratom toxicity and the possible role of intralipid. J Intensive Care Soc 19:61–63

    PubMed  Article  Google Scholar 

  23. 23.

    Walsh EE, Shoff EN, Elizabeth Zaney M, Hime GW, Garavan F, Boland DM (2018) To test or not to test?: the value of toxicology in a delayed overdose death. J Forensic Sci 64:314–317

    PubMed  Article  Google Scholar 

  24. 24.

    Hughes RL (2018) Fatal combination of mitragynine and quetiapine—a case report with discussion of a potential herb-drug interaction. Forensic Sci Med Pathol 15:110–113

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Dorman C, Wong D, Khan A (2015) Cholestatic hepatitis from prolonged kratom use: a case report. Hepatology 61:1086–1087

    PubMed  Article  Google Scholar 

  26. 26.

    Holler JM, Vorce SP, McDonough-Bender PC, Magluilo J, Solomon CJ, Levine B (2011) A drug toxicity death involving propylhexedrine and mitragynine. J Anal Toxicol 35:54–59

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Olsen EOM, O’Donnell J, Mattson CL, Schier JG, Wilson N (2019) Notes from the field: unintentional drug overdose deaths with kratom detected—27 states, July 2016–December 2017. MMWR Recomm Rep 68:326–327. Accessed 9 Oct 2019

  28. 28.

    Rosenbaum C, Carreiro S, Babu K (2012) Here today, gone tomorrow…and back again? a review of herbal marijuana alternatives (k2, spice), synthetic cathinones (bath salts), kratom, salvia divinorum, methoxetamine, and piperazines. J Med Toxicol 8:15–32

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    National Forensic Laboratory Information Services Annual Report, (2017) Accessed 9 Oct 2019

  30. 30.

    National Forensic Laboratory Information Services Annual Report, (2015) Accessed 9 Oct 2019

  31. 31.

    National Forensic Laboratory Information Services Annual Report, (2010) Accessed 9 Oct 2019

  32. 32.

    Drug Enforcement Administration (DEA) (2017) Drugs of abuse: a DEA resource guide. Accessed 9 Oct 2019

  33. 33.

    Adkins J, Boyer E, McCurdy C (2011) Mitragyna speciosa, a psychoactive tree from Southeast Asia with opioid activity. Curr Med Chem 11:1165–1175

    CAS  Article  Google Scholar 

  34. 34.

    Kruegel AC, Grundmann O (2017) The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. Neuropharmacology 15:108–120

    Google Scholar 

  35. 35.

    Raffa RB (2015) Kratom and other mitragynines: the chemistry and pharmacology of opioids from a non-opium source, 1st edn. Florida, Boca Raton

    Google Scholar 

  36. 36.

    Takayama H (2004) Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, mitragyna speciosa. Chem Pharm Bull 52:916–928

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Kronstrand R, Roman M, Thelander G, Eriksson A (2011) Unintentional fatal intoxications with mitragynine and o-desmethyltramadol from the herbal blend krypton. J Anal Toxicol 35:242–247

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Philipp AA, Meyer MR, Wissenbach DK, Weber AA, Zoerntlein SW, Zweipfenning PGM, Maurer HH (2011) Monitoring of kratom or krypton intake in urine using gc-ms in clinical and forensic toxicology. Anal Bioanal Chem 400:127–135

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Arndt T, Claussen U, Gussregen B, Schrofel S, Sturzer B, Werle A, Wolf G (2011) Kratom alkaloids and O-desmethyltramadol in urine of a “Krypton” herbal mixture consumer. Forensic Sci Int 208:47–52

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Basiliere S, Kerrigan S (2019) Identification of metabolites and potential biomarkers of kratom in urine. J Chromatogr B. ahead of print)

    Article  Google Scholar 

  41. 41.

    Vuppala PK, Boddu SP, Furr EB, McCurdy CR, Avery BA (2011) Simple, sensitive, high-throughput method for the quantification of mitragynine in rat plasma using uplc-ms and its application to an intravenous pharmacokinetic study. Chromatographia 74:703–710

    CAS  Article  Google Scholar 

  42. 42.

    Vuppala PK, Jamalapuram S, Furr EB, McCurdy CR, Avery BA (2013) Development and validation of a uplc-ms/ms method for the determination of 7-hydroxymitragynine, a μ-opioid agonist, in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 27:1726–1732

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    de Moraes NV, Moretti RAC, Furr EB, McCurdy CR, Lanchote VL (2009) Determination of mitragynine in rat plasma by lc-ms/ms: application to pharmacokinetics. J Chromatogr B 877:2593–2597

    Article  CAS  Google Scholar 

  44. 44.

    Parthasarathy S, Ramanathan S, Ismail S, Adenan MI, Mansor SM, Murugaiyah V (2010) Determination of mitragynine in plasma with solid-phase extraction and rapid hplc–uv analysis, and its application to a pharmacokinetic study in rat. Anal Bioanal Chem 397:2023–2030

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Basiliere S, Kerrigan S (2020) CYP450-Mediated metabolism of mitragynine and investigation of unhydrolyzed phase i metabolites in human urine. J Anal Toxicol. ahead of print)

    Article  PubMed  Google Scholar 

  46. 46.

    Scientific working group for forensic toxicology (SWGTOX) (2013) Standard practices for method validation in forensic toxicology. J Anal Toxicol 37:452–474

    Article  CAS  Google Scholar 

  47. 47.

    Philipp AA, Wissenbach DK, Zoerntlein SW, Klein ON, Kanogsunthornrat J, Maurer HH (2009) Studies on the metabolism of mitragynine, the main alkaloid of the herbal drug Kratom, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry. J Mass Spectrom 44:1249–1261

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Avula B, Sagi S, Yan-Hong W, Mei W, Ali Z, Smillie TJ, Zweigenbaum J, Khan IA (2015) Identification and characterization of indole and oxindole alkaloids from leaves of mitragyna speciosa korth using liquid chromatography–accurate qtof mass spectrometry. J AOAC Int 98:13–31

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Basiliere S, Bryand K, Kerrigan S (2018) Identification of five mitragyna alkaloids in urine using liquid chromatography-quadrupole/time of flight mass spectrometry. J Chromatogr B 1080:11–19

    CAS  Article  Google Scholar 

  50. 50.

    Kruegal A, Uprety R, Grinnell S, Langreck C, Pekarskaya E, Le Rouzic V et al (2019) 7-Hydroxymitragynine is an active metabolite of mitragynine and a key mediator of its analgesic effects. ACS Cent Sci 5:992–1001

    Article  CAS  Google Scholar 

  51. 51.

    Philipp AA, Wissenbach DK, Weber AA, Zapp J, Maurer HH (2010) Phase I and II metabolites of speciogynine, a diastereomer of the main Kratom alkaloid mitragynine, identified in rat and human urine by liquid chromatography coupled to low- and high-resolution linear ion trap mass spectrometry. J Mass Spectrom 45:1344–1357

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Philipp AA, Wissenbach DK, Weber AA, Zapp J, Maurer HH (2011) Metabolism studies of the Kratom alkaloid speciociliatine, a diastereomer of the main alkaloid mitragynine, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry. Anal Bioanal Chem 399:2747–2753

    CAS  PubMed  Article  Google Scholar 

Download references


We gratefully acknowledge Dr. Ikhlas Khan and the National Center for Natural Products Research School of Pharmacy at The University of Mississippi for providing speciogynine. This project was supported by Award no. 2016-DN-BX-0006, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice.

Author information



Corresponding author

Correspondence to Sarah Kerrigan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures involving biological samples obtained from human decedents were in accordance with the ethical standards of the Sam Houston State University Institutional Review Board (Protection of Human Subjects Committee) in accordance with 45CFR46.101(b) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Basiliere, S., Brower, J., Winecker, R. et al. Identification of five mitragyna alkaloids in blood and tissues using liquid chromatography-quadrupole/time-of-flight mass spectrometry. Forensic Toxicol 38, 420–435 (2020).

Download citation


  • Postmortem toxicology
  • Kratom
  • Mitragynine
  • 7-Hydroxymitragynine
  • Blood
  • Liver