Skip to main content
Log in

What are the limitations of methods to measure carbon monoxide in biological samples?

  • Review Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

Carbon monoxide (CO) is one of the most important toxic gases in the atmosphere. Its high affinity for hemoglobin has made carboxyhemoglobin (COHb) the most appropriate biomarker for CO poisoning. COHb is measured using spectrophotometric (ultraviolet-spectrophotometry, CO-oximetry) or gas chromatographic (GC) methods combined with flame ionization or mass spectrometry (MS) detectors. However, inconsistencies in many cases have been reported between measured values and reported symptoms, raising doubts as to the suitability of COHb as a biomarker and the accuracy and reliability of its measurement methods. Therefore, we aimed to review the accuracy of current methods used to measure CO and to determine their sources of error and their effects on the interpretation process.

Methods

A detailed search of PubMed was performed in November 2018 using relevant keywords. After exclusion criteria were applied, 46 articles out of 191 initial hits were carefully reviewed.

Results

While optical methods are highly influenced by changes in blood quality due to degradation of samples during storage, GC methods are less affected. However, measurement of COHb does not quantify free CO, which is mainly responsible for toxicity mechanisms other than hypoxia, such as inhibition of hemoproteins, thus underestimating the true CO burden. Therefore, measurement of COHb is not sufficiently accurate for diagnosis of CO poisoning.

Conclusions

An alternative biomarker is needed, such as determining the total amount of CO in blood. Although further research is required, we recommend that toxicologists consider all sources of error that can alter COHb concentrations, and in more challenging cases, they should use GC–MS methods to confirm the results obtained by spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bleecker ML (2015) Carbon monoxide intoxication. Handb Clin Neurol 131:191–203. https://doi.org/10.1016/B978-0-444-62627-1.00024-X

    Article  PubMed  Google Scholar 

  2. Raub JA, Mathieu-Nolf M, Hampson NB, Thom SR (2000) Carbon monoxide poisoning: a public health perspective. Toxicology 145:1–14. https://doi.org/10.1016/S0300-483X(99)00217-6

    Article  CAS  PubMed  Google Scholar 

  3. Ouahmane Y, Mounach J, Satte A, Bourazza A, Soulaymani A, Elomari N (2018) Severe poisoning with carbon monoxide (CO) with neurological impairment, study of 19 cases. Toxicol Anal Clin 30:50–60. https://doi.org/10.1016/j.toxac.2017.10.003

    Article  Google Scholar 

  4. Oliverio S, Varlet V (2018) Carbon monoxide analysis method in human blood by airtight gas syringe-gas chromatography-mass spectrometry (AGS-GC-MS): relevance for postmortem poisoning diagnosis. J Chromatogr B 1090:81–89. https://doi.org/10.1016/j.jchromb.2018.05.019

    Article  CAS  Google Scholar 

  5. Piatkowski A, Ulrich D, Grieb G, Pallua N (2009) A new tool for the early diagnosis of carbon monoxide intoxication. Inhal Toxicol 21:1144–1147. https://doi.org/10.3109/08958370902839754

    Article  CAS  PubMed  Google Scholar 

  6. Ogilvie CM, Forster RE, Blakemore WS, Morton JW (1957) A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J Clin Invest 36:1–17. https://doi.org/10.1172/JCI103402

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jarvis MJ, Russell M, Salojee Y (1980) Expired air carbon monoxide: a simple breath test of tobacco smoke intake. Br Med J 281:484–485. https://doi.org/10.1136/bmj.281.6238.484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jarvis MJ, Belcher M, Vesey C, Hutchison DCS (1986) Low cost carbon monoxide monitors in smoking assessment. Thorax 41:886–887. https://doi.org/10.1136/thx.41.11.886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Middleton ET, Morice AH (2000) Breath carbon monoxide as an indication of smoking habit. Chest 117:758–763. https://doi.org/10.1378/chest.117.3.758

    Article  CAS  PubMed  Google Scholar 

  10. MacIntyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CPM, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, Gustafsson P, Hankinson J, Jensen R, McKay R, Miller MR, Navajas D, Pedersen OF, Pellegrino R, Wanger J (2005) Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 26:720–735. https://doi.org/10.1183/09031936.05.00034905

    Article  CAS  PubMed  Google Scholar 

  11. Penney DG (2007) Carbon monoxide poisoning, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  12. Yan H, Liu CC (1994) A solid polymer electrolyte-bases electrochemical carbon monoxide sensor. Sens Actuators B Chem 17:165–168. https://doi.org/10.1016/0925-4005(94)87045-4

    Article  CAS  Google Scholar 

  13. Stewart RD, Stewart RS, Stamm W, Seelen RP (1976) Rapid estimation of carbon monoxide level in fire fighters. J Am Med Assoc 235:390–392. https://doi.org/10.1001/jama.1976.03260300016021

    Article  CAS  Google Scholar 

  14. Vreman HJ, Stevenson DK, Oh W, Fanaroff AA, Wright LL, Lemons JA, Wright E, Shankaran S, Tyson JE, Korones SB (1994) Semiportable electrochemical instrument for determining carbon monoxide in breath. Clin Chem 40:1927–1933 (PMID: 7923774)

    CAS  PubMed  Google Scholar 

  15. Wigfield DC, Hollebone BR, MacKeen JE, Selwin JC (1981) Assessment of the methods available for the determination of carbon monoxide in blood. J Anal Toxicol 5:122–125. https://doi.org/10.1093/jat/5.3.122

    Article  CAS  PubMed  Google Scholar 

  16. Ramieri A Jr, Jatlow P, Seligson D (1974) New method for rapid determination of carboxyhemoglobin by use of double-wavelength spectrophotometry. Clin Chem 20:278–281 (PMID: 4813007)

    CAS  PubMed  Google Scholar 

  17. Winek CL, Prex DM (1981) A comparative study of analytical methods to determine postmortem changes in carbon monoxide concentration. Forensic Sci Int 18:181–187. https://doi.org/10.1016/0379-0738(81)90158-4

    Article  CAS  PubMed  Google Scholar 

  18. Boumba VA, Vougiouklakis T (2005) Evaluation of the methods used for carboxyhemoglobin analysis in postmortem blood. Int J Toxicol 24:275–281. https://doi.org/10.1080/10915810591007256

    Article  CAS  PubMed  Google Scholar 

  19. Fukui Y, Matsubara M, Takahashi S, Matsubara K (1984) A study of derivative spectrophotometry for the determination of carboxyhemoglobin in blood. J Anal Toxicol 8:277–281. https://doi.org/10.1093/jat/8.6.277

    Article  CAS  PubMed  Google Scholar 

  20. Fujihara J, Kinoshita H, Tanaka N, Yasuda T, Takeshita H (2013) Accuracy and usefulness of the AVOXimeter 4000 as routine analysis of carboxyhemoglobin. J Forensic Sci 58:1047–1049. https://doi.org/10.1111/1556-4029.12144

    Article  CAS  PubMed  Google Scholar 

  21. Bailey SR, Russell EL, Martinez A (1997) Evaluation of the avoximeter: precision, long-term stability, linearity, and use without heparin. J Clin Monit 13:191–198. https://doi.org/10.1023/A:1007308616686

    Article  CAS  PubMed  Google Scholar 

  22. Olson KN, Hillyer MA, Kloss JS, Geiselhart RJ, Apple FS (2010) Accident or arson: is CO-oximetry reliable for carboxyhemoglobin measurement postmortem? Clin Chem 56:515–519. https://doi.org/10.1373/clinchem.2009.131334

    Article  CAS  PubMed  Google Scholar 

  23. Widdop B (2002) Analysis of carbon monoxide. Ann Clin Biochem 39:122–125. https://doi.org/10.1258/000456302760042146

    Article  Google Scholar 

  24. Mahoney JJ, Vreman HJ, Stevenson DK, Van Kessel AL (1993) Measurement of carboxyhemoglobin and total hemoglobin by five specialized spectrophotometers (CO-oximeters) in comparison with reference methods. Clin Chem 39:1693–1700 (PMID: 8353959)

    CAS  PubMed  Google Scholar 

  25. International Organization for Standardization (2008) Analysis of blood for asphyxiant toxicants—carbon monoxide and hydrogen cyanide. ISO 27368:2008. https://www.iso.org/standard/44127.html. Accessed 30 May 2019

  26. Hampson NB (2008) Stability of carboxyhemoglobin in stored and mailed blood samples. Am J Emerg Med. https://doi.org/10.1016/j.ajem.2007.04.028

    Article  PubMed  Google Scholar 

  27. Kunsman GW, Presses CL, Rodriguez P (2000) Carbon monoxide stability in stored postmortem blood samples. J Anal Toxicol 24:572–578. https://doi.org/10.1093/jat/24.7.572

    Article  CAS  PubMed  Google Scholar 

  28. Chace DH, Goldbaum LR, Lappas NT (1986) Factors affecting the loss of carbon monoxide from stored blood samples. J Anal Toxicol 10:181–189. https://doi.org/10.1093/jat/10.5.181

    Article  CAS  PubMed  Google Scholar 

  29. Ocak A, Valentour JC, Blanke RV (1985) The effects of storage conditions on the stability of carbon monoxide in postmortem blood. J Anal Toxicol 9:202–206. https://doi.org/10.1093/jat/9.5.202

    Article  CAS  PubMed  Google Scholar 

  30. Vreman HJ, Wong RJ, Stevenson DK, Smialek JE, Fowler DR, Li L, Vigorito RD, Zielke HR (2006) Concentration of carbon monoxide (CO) in postmortem human tissues: effect of environmental CO exposure. J Forensic Sci 51:1182–1190. https://doi.org/10.1111/j.1556-4029.2006.00212.x

    Article  CAS  PubMed  Google Scholar 

  31. Middleberg RA, Easterling DE, Zelonis SF, Rieders F, Rieders MF (1993) Estimation of perimortal percent carboxy-heme in nonstandard postmortem specimens using analysis of carbon monoxide by GC/MS and iron by flame atomic absorption spectrophotometry. J Anal Toxicol 17:11–13. https://doi.org/10.1093/jat/17.1.11

    Article  CAS  PubMed  Google Scholar 

  32. Wu L, Wang R (2005) Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57:585–630. https://doi.org/10.1124/pr.57.4.3

    Article  CAS  PubMed  Google Scholar 

  33. Tworoger SS, Hankinson SE (2006) Use of biomarkers in epidemiologic studies: minimizing the influence of measurement error in the study design and analysis. Cancer Causes Control 17:889–899. https://doi.org/10.1007/s10552-006-0035-5

    Article  PubMed  Google Scholar 

  34. Seto Y, Kataoka M, Tsuge K (2001) Stability of blood carbon monoxide and hemoglobins during heating. Forensic Sci Int 121:144–150. https://doi.org/10.1016/S0379-0738(01)00465-0

    Article  CAS  PubMed  Google Scholar 

  35. Vreman HJ, Stevenson DK (1994) Carboxyhemoglobin determined in neonatal blood with a CO-oximeter unaffected by fetal oxyhemoglobin. Clin Chem 40:1522–1527 (PMID: 7519133)

    CAS  PubMed  Google Scholar 

  36. Varlet V, De Croutte EL, Augsburger M, Mangin P (2013) A new approach for the carbon monoxide (CO) exposure diagnosis: measurement of total CO in human blood versus carboxyhemoglobin (HbCO). J Forensic Sci 58:1041–1046. https://doi.org/10.1111/1556-4029.12130

    Article  CAS  PubMed  Google Scholar 

  37. Hao H, Zhou H, Liu X, Zhang Z, Yu Z (2013) An accurate method for microanalysis of carbon monoxide in putrid postmortem blood by head-space gas chromatography–mass spectrometry (HS/GC/MS). Forensic Sci Int 229:116–121. https://doi.org/10.1016/j.forsciint.2013.03.052

    Article  CAS  PubMed  Google Scholar 

  38. Kojima T, Nishiyama Y, Yashiki M, Une I (1982) Postmortem formation of carbon monoxide. Forensic Sci Int 19:243–248. https://doi.org/10.1016/0379-0738(82)90085-8

    Article  CAS  PubMed  Google Scholar 

  39. Zaouter C, Zavorsky GS (2012) The measurement of carboxyhemoglobin and methemoglobin using a non-invasive pulse CO-oximeter. Respir Physiol Neurobiol 182:88–92. https://doi.org/10.1016/j.resp.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  40. Feiner JR, Rollins MD, Sall JW, Eilers H, Au P, Bickler PE (2013) Accuracy of carboxyhemoglobin detection by pulse CO-oximetry during hypoxemia. Anesth Analg 117:847–858. https://doi.org/10.1213/ANE.0b013e31828610a0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weaver LK, Churchill SK, Deru K, Cooney D (2013) False positive rate of carbon monoxide saturation by pulse oximetry of emergency department patients. Respir Care 58:232–240. https://doi.org/10.4187/respcare.01744

    Article  PubMed  Google Scholar 

  42. Wilcox SR, Richards JB (2013) Noninvasive carbon monoxide detection: insufficient evidence for broad clinical use. Respir Care 58:376–379. https://doi.org/10.4187/respcare.02288

    Article  PubMed  Google Scholar 

  43. Kulcke A, Feiner J, Menn I, Holmer A, Hayoz J, Bickler P (2016) The accuracy of pulse spectroscopy for detecting hypoxemia and coexisting methemoglobin or carboxyhemoglobin. Anesth Analg 122:1856–1865. https://doi.org/10.1213/ANE.0000000000001219

    Article  CAS  PubMed  Google Scholar 

  44. Coburn RF, Danielson GK, Blakemore WS, Forster RE 2nd (1964) Carbon monoxide in blood: analytical method and sources of error. J Appl Physiol 19:510–515. https://doi.org/10.1152/jappl.1964.19.3.510

    Article  CAS  PubMed  Google Scholar 

  45. Ayres SM, Criscitiello A, Giannelli S Jr (1966) Determination of blood carbon monoxide content by gas chromatography. J Appl Physiol 21:1368–1370. https://doi.org/10.1152/jappl.1966.21.4.1368

    Article  CAS  PubMed  Google Scholar 

  46. Vreman HJ, Kwong LK, Stevenson DK (1984) Carbon monoxide in blood: an improved microliter blood-sample collection system, with rapid analysis by gas chromatography. Clin Chem 30:1382–1386 (PMID: 6744592)

    CAS  PubMed  Google Scholar 

  47. Walch SG, Lachenmeier DW, Sohnius E-M, Madea B, Musshoff F (2010) Rapid determination of carboxyhemoglobin in postmortem blood using fully-automated headspace gas chromatography with methaniser and FID. Open Toxicol J 4:21–25. https://doi.org/10.2174/1874340401004010021

    Article  CAS  Google Scholar 

  48. Rodkey FL, Collison HA (1970) An artifact in the analysis of oxygenated blood for its low carbon monoxide content. Clin Chem 16:896–899 (PMID: 5473549)

    CAS  PubMed  Google Scholar 

  49. Cardeal ZL, Pradeau D, Hamon M, Abdoulaye I, Pailler FM, Lejeune B (1993) New calibration method for gas chromatographic assay of carbon monoxide in blood. J Anal Toxicol 17:193–195. https://doi.org/10.1093/jat/17.4.193

    Article  CAS  PubMed  Google Scholar 

  50. Oritani S, Zhu B-L, Ishida K, Shimotouge K, Quan L, Fujita MQ, Maeda H (2000) Automated determination of carboxyhemoglobin contents in autopsy materials using head-space gas chromatography/mass spectrometry. Forensic Sci Int 113:375–379. https://doi.org/10.1016/S0379-0738(00)00227-9

    Article  CAS  PubMed  Google Scholar 

  51. Collison HA, Rodkey FL, O’Neal JD (1968) Determination of carbon monoxide in blood by gas chromatography. Clin Chem 14:162–171

    CAS  Google Scholar 

  52. Varlet V, De Croutte EL, Augsburger M, Mangin P (2012) Accuracy profile validation of a new method for carbon monoxide measurement in the human blood using headspace–gas chromatography–mass spectrometry (HS–GC–MS). J Chromatogr B 880:125–131. https://doi.org/10.1016/j.jchromb.2011.11.028

    Article  CAS  Google Scholar 

  53. Sundin A-M, Larsson JE (2001) Rapid and sensitive method for the analysis of carbon monoxide in blood using gas chromatography with flame ionisation detection. J Chromatogr B 766:115–121. https://doi.org/10.1016/S0378-4347(01)00460-1

    Article  Google Scholar 

  54. Anderson CR, Wu W-H (2005) Analysis of carbon monoxide in commercially treated tuna (Thunnus spp.) and mahi-mahi (Coryphaena hippurus) by gas chromatography/mass spectrometry. J Agric Food Chem 53:7019–7023. https://doi.org/10.1021/jf0514266

    Article  CAS  PubMed  Google Scholar 

  55. Lewis RJ, Johnson RD, Canfield DV (2004) An accurate method for the determination of carboxyhemoglobin in postmortem blood using GC/TCD. J Anal Toxicol 28:59–62. https://doi.org/10.1093/jat/28.1.59

    Article  CAS  PubMed  Google Scholar 

  56. Luchini PD, Leyton JF, Strombech MdLC, Ponce JC, Jesus MdGS, Leyton V (2009) Validation of a spectrophotometric method for quantification of carboxyhemoglobin. J Anal Toxicol 33:540–544. https://doi.org/10.1093/jat/33.8.540

    Article  CAS  PubMed  Google Scholar 

  57. Dubowski KM, Lu JL (1973) Measurement of carboxyhemoglobin and carbon monoxide in blood. Ann Clin Lab Sci 3:53–65 (PMID: 4691500)

    CAS  PubMed  Google Scholar 

  58. Costantino AG, Park J, Caplan YH (1986) Carbon monoxide analysis: a comparison of two CO-oximeters and headspace gas chromatography. J Anal Toxicol 10:190–193. https://doi.org/10.1093/jat/10.5.190

    Article  CAS  PubMed  Google Scholar 

  59. Levine B, Green D, Saki S, Symons A, Smialek JE (1997) Evaluation of the IL-682 CO-oximeter; comparison to the IL-482 CO-oximeter and gas chromatography. J Can Soc Forensic Sci 30:75–78. https://doi.org/10.1080/00085030.1997.10757089

    Article  CAS  Google Scholar 

  60. Lee C-W, Yim L-K, Chan DTW, Tam JCN (2002) Sample pre-treatment for CO-oximetric determination of carboxyhaemoglobin in putrefied blood and cavity fluid. Forensic Sci Int 126:162–166. https://doi.org/10.1016/S0379-0738(02)00052-X

    Article  CAS  PubMed  Google Scholar 

  61. Lee C-W, Tam JCN, Kung L-K, Yim L-K (2003) Validity of CO-oximetric determination of carboxyhaemoglobin in putrefying blood and body cavity fluid. Forensic Sci Int 132:153–156. https://doi.org/10.1016/S0379-0738(03)00011-2

    Article  CAS  PubMed  Google Scholar 

  62. Brehmer C, Iten PX (2003) Rapid determination of carboxyhemoglobin in blood by oximeter. Forensic Sci Int 133:179–181. https://doi.org/10.1016/S0379-0738(03)00066-5

    Article  CAS  PubMed  Google Scholar 

  63. Marks GS, Vreman HJ, McLaughlin BE, Brien JF, Nakatsu K (2002) Measurement of endogenous carbon monoxide formation in biological systems. Antioxid Redox Signal 4:271–277. https://doi.org/10.1089/152308602753666325

    Article  CAS  PubMed  Google Scholar 

  64. Van Dam J, Daenens P (1994) Microanalysis of carbon monoxide in blood by head-space capillary gas chromatography. J Forensic Sci 39:473–478 (PMID: 8195758)

    CAS  PubMed  Google Scholar 

  65. Oritani S, Nagai K, Zhu B-L, Maeda H (1996) Estimation of carboxyhemoglobin concentrations in thermo-coagulated blood on a CO-oximeter system: an experimental study. Forensic Sci Int 83:211–218. https://doi.org/10.1016/S0379-0738(96)02039-7

    Article  CAS  PubMed  Google Scholar 

  66. Guillot JG, Weber JP, Savoie JY (1981) Quantitative determination of carbon monoxide in blood by head-space gas chromatography. J Anal Toxicol 5:264–266. https://doi.org/10.1093/jat/5.6.264

    Article  CAS  PubMed  Google Scholar 

  67. Czogala J, Goniewicz ML (2005) The complex analytical method for assessment of passive smokers’ exposure to carbon monoxide. J Anal Toxicol 29:830–834. https://doi.org/10.1093/jat/29.8.830

    Article  CAS  PubMed  Google Scholar 

  68. Vaupel P, Zander R, Bruley DF (eds) (1994) Oxygen transport to tissue XV. Springer Science and Business Media, New York

    Google Scholar 

  69. Penney DG (ed) (2000) Carbon monoxide toxicity, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  70. Oliverio S, Varlet V (2019) Total blood carbon monoxide: alternative to carboxyhemoglobin as biological marker for carbon monoxide poisoning determination. J Anal Toxicol 43:79–87. https://doi.org/10.1093/jat/bky084

    Article  CAS  PubMed  Google Scholar 

  71. Pojer R, Whitfield JB, Poulos V, Eckhard IF, Richmond R, Hensley WJ (1984) Carboxyhemoglobin, cotinine, and thiocyanate assay compared for distinguishing smokers from non-smokers. Clin Chem 30:1377–1380 (PMID: 6744590)

    CAS  PubMed  Google Scholar 

  72. Wald NJ, Idle M, Boreham J, Bailey A (1981) Carbon monoxide in breath in relation to smoking and carboxyhaemoglobin levels. Thorax 36:366–369. https://doi.org/10.1136/thx.36.5.366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Turner A, McNicol MW, Sillet RW (1986) Distribution of carboxyhaemoglobin concentrations in smokers and non-smokers. Thorax 41:25–27. https://doi.org/10.1136/thx.41.1.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Einhorn IN (1975) Physiological and toxicological aspects of smoke produced during the combustion of polymeric materials. Environ Health Perspect 11:163–189. https://doi.org/10.1289/ehp.7511163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Roderique JD, Josef CS, Feldman MJ, Spiess BD (2015) A modern literature review of carbon monoxide poisoning theories, therapies, and potential targets for therapy advancement. Toxicology 334:45–58. https://doi.org/10.1016/j.tox.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  76. Hampson NB, Hauff NM (2008) Carboxyhemoglobin levels in carbon monoxide poisoning: do they correlate with the clinical picture? Am J Emerg Med 26:665–669. https://doi.org/10.1016/j.ajem.2007.10.005

    Article  PubMed  Google Scholar 

  77. Hampson NB (2016) Myth busting in carbon monoxide poisoning. Am J Emerg Med 34:295–297. https://doi.org/10.1016/j.ajem.2015.10.051

    Article  PubMed  Google Scholar 

  78. Weaver LK, Hopkins RO, Churchill SK, Deru K (2008) Neurological outcomes 6 years after acute carbon monoxide poisoning. In: Abstracts of the Undersea and Hyperbaric Medical Society 2008 Annual Scientific Meeting, Salt Lake City. http://archive.rubicon-foundation.org/7823. Accessed 30 May 2019

  79. Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL, Roesner A, Schmidt M, Weich B, Wystub S, Saaler-Reinhardt S, Reuss S, Bolognesi M, De Sanctis D, Marden MC, Kiger L, Moens L, Dewilde S, Nevo E, Avivi A, Weber RE, Fago A, Burmester T (2005) Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem 99:110–119. https://doi.org/10.1016/j.jinorgbio.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  80. Raub JA, Benignus VA (2002) Carbon monoxide and the nervous system. Neurosci Biobehav Rev 26:925–940. https://doi.org/10.1016/S0149-7634(03)00002-2

    Article  CAS  PubMed  Google Scholar 

  81. Sokal JA, Kralkowska E (1985) The relationship between exposure duration, carboxyhemoglobin, blood glucose, pyruvate and lactate and the severity of intoxication in 39 cases of acute carbon monoxide poisoning in man. Arch Toxicol. https://doi.org/10.1007/BF00290887

    Article  PubMed  Google Scholar 

  82. Moon JM, Shin MH, Chun BJ (2011) The value of initial lactate in patients with carbon monoxide intoxication: in the emergency department. Hum Exp Toxicol 30:836–843. https://doi.org/10.1177/0960327110384527

    Article  CAS  PubMed  Google Scholar 

  83. Cervellin G, Comelli I, Rastelli G, Picanza A, Lippi G (2014) Initial blood lactate correlates with carboxyhemoglobin and clinical severity in carbon monoxide poisoned patients. Clin Biochem 47:298–301. https://doi.org/10.1016/j.clinbiochem.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  84. Cervellin G, Comelli I, Buonocore R, Picanza A, Rastelli G, Lippi G (2015) Serum bilirubin value predicts hospital admission in carbon monoxide-poisoned patients. Active player or simple bystander? Clinics (Sao Paulo) 70:628–631. https://doi.org/10.6061/clinics/2015(09)06

    Article  Google Scholar 

  85. Cakir Z, Aslan S, Umudum Z, Acemoglu H, Akoz A, Turkyilmaz S, Öztürk N (2010) S-100β and neuron-specific enolase levels in carbon monoxide-related brain injury. Am J Emerg Med 28:61–67. https://doi.org/10.1016/j.ajem.2008.10.032

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr Ariana Zeka from Brunel University London for providing assistance in reviewing the manuscript and Dr Giovanni Leonardi from Public Health England for fruitful discussion on the topic as part of a collaborative project on carbon monoxide measurement error. This research received funding from the Gas Safety Trust, a UK-based grant-giving charity, grant number 2015-GST-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Oliverio.

Ethics declarations

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Ethical approval

No ethical approval was required for the preparation of this review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliverio, S., Varlet, V. What are the limitations of methods to measure carbon monoxide in biological samples?. Forensic Toxicol 38, 1–14 (2020). https://doi.org/10.1007/s11419-019-00490-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-019-00490-1

Keywords

Navigation