Forensic Toxicology

, Volume 34, Issue 2, pp 344–352 | Cite as

Absolute configuration of the synthetic cannabinoid MDMB-CHMICA with its chemical characteristics in illegal products

  • Lars Andernach
  • Stefan Pusch
  • Carina Weber
  • Dieter Schollmeyer
  • Sascha Münster-Müller
  • Michael Pütz
  • Till Opatz
Original Article


A seized sample of the synthetic cannabinoid MDMB-CHMICA was studied by means of vibrational and electronic circular dichroism spectroscopy and found to have (S)-configuration by comparison of the experimental spectra with density functional theory calculations. We were able to additionally confirm the absolute configuration was additionally confirmed using X-ray crystallography. Furthermore, the title compound was extracted from five commercially available “Spice-like” herbal mixtures. The extracts were all found to have the same absolute configuration as the seized sample and all analyzed samples were found to be of very high optical purity as judged by chiral high-performance liquid chromatography.


MDMB-CHMICA Synthetic cannabinoids New psychoactive substances Chiroptical spectroscopy X-ray crystallography Chiral HPLC 



The authors thank Prof. Pol Besenius (Mainz) for granting access to the ECD spectrometer, the Zentrum für Datenverarbeitung (Mainz) for access to the MOGON supercomputer, and Dr. Serge Schneider, Laboratoire National de Santé, Luxembourg, for arranging the transfer of samples of an MDMB-CHMICA customs seizure to BKA. S.P. is grateful for a scholarship from the Fonds der Chemischen Industrie. This work was performed within the research project ‘‘SPICE-Profiling’’ (agreement no. JUST/2013/ISEC/DRUGS/AG/ISEC/4000006421) funded by the European Union′s program ‘‘Fight Against and Prevention of Crime’’ (ISEC). The contents of the paper are the sole responsibility of the authors and can in no way be taken to reflect the views of the European Commission.

Compliance with ethical standards

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11419_2016_321_MOESM1_ESM.pdf (4.7 mb)
Supplementary material 1 (PDF 4805 kb)


  1. 1.
    Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N (2009) ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44:832–837CrossRefPubMedGoogle Scholar
  2. 2.
    Uchiyama N, Kikura-Hanajiri R, Kawahara N, Haishima Y, Goda Y (2009) Identification of a cannabinoid analog as a new type of designer drug in a herbal product. Chem Pharm Bull 57:439–441CrossRefPubMedGoogle Scholar
  3. 3.
    EMCDDA (2015) European drug report 2015: trends and developments. Accessed January 2016
  4. 4.
    Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V (2013) Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 108:534–544CrossRefPubMedGoogle Scholar
  5. 5.
    Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2014) Changes in the prevalence of new psychoactive substances before and after the introduction of the generic scheduling of synthetic cannabinoids in Japan. Drug Test Anal 6:832–839CrossRefPubMedGoogle Scholar
  6. 6.
    EMCDDA (2015) EMCDDA––Europol 2014 annual report on the implementation of council decision 2005/387/JHA. Implementation reports. Accessed January 2016
  7. 7.
    Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Shafran Y, Morzherin Y, Lebedev AT (2015) Identification and analytical characteristics of synthetic cannabinoids with an indazole-3-carboxamide structure bearing a N-1-methoxycarbonylalkyl group. Anal Bioanal Chem 407:6301–6315CrossRefPubMedGoogle Scholar
  8. 8.
    Langer N, Lindigkeit R, Schiebel H-M, Papke U, Ernst L, Beuerle T (2016) Identification and quantification of synthetic cannabinoids in “spice-like” herbal mixtures: update of the German situation for the spring of 2015. Forensic Toxicol 34:94–107CrossRefGoogle Scholar
  9. 9.
    Franz F, Schwörer N, Angerer V, Moosmann B, Auwärter V (2015) Metabolism and urine analysis of the new synthetic cannabinoid MDMB-CHMICA. Toxichem Krimtech 82:192–198Google Scholar
  10. 10.
    Westin AA, Frost J, Brede WR, Gundersen POM, Einvik S, Aarset H, Slørdal L (2016) Sudden cardiac death following use of the synthetic cannabinoid MDMB-CHMICA. J Anal Toxicol 40:86–87PubMedGoogle Scholar
  11. 11.
    Angerer V, Franz F, Schwarze B, Moosmann B, Auwärter V (2016) Reply to ‘sudden cardiac death following use of the synthetic cannabinoid MDMB-CHMICA’. J Anal Toxicol 40:240–242CrossRefPubMedGoogle Scholar
  12. 12.
    UNODC (2015) Global SMART update––synthetic cannabinoids: key facts about the largest and most dynamic group of NPS. Accessed January 2016
  13. 13.
    BtMÄndV, implied in German narcotics law (BtMG) since November 21st, 2015, BGBl. 1 S. 1992Google Scholar
  14. 14.
    Pütz M, Schneiders S, Auwärter V, Münster-Müller S, Scheid N (2015) The EU-project ′SPICE-profiling′ (2015–2017)––objectives and results of a first study on Spice products containing 5F-PB-22. Toxichem Krimtech 82:273–283Google Scholar
  15. 15.
    Cody JT (1992) Determination of methamphetamine enantiomer ratios in urine by gas chromatography–mass spectrometry. J Chromatogr 580:77–95CrossRefGoogle Scholar
  16. 16.
    Kristensen K, Christensen CB, Christrup LL (1994) The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine. Life Sci 56:45–50CrossRefGoogle Scholar
  17. 17.
    Pop E (2000) Nonpsychotropic synthetic cannabinoids. Curr Pharm Design 6:1347–1359CrossRefPubMedGoogle Scholar
  18. 18.
    Kiyoi T, York M, Francis S, Edwards D, Walker G, Houghton AK, Cottney JE, Baker J, Adam JM (2010) Design, synthesis, and structure–activity relationship study of conformationally constrained analogs of indole-3-carboxamides as novel CB1 cannabinoid receptor agonists. Bioorg Med Chem Lett 20:4918–4921CrossRefPubMedGoogle Scholar
  19. 19.
    Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29:2176–2179CrossRefGoogle Scholar
  20. 20.
    Stewart JP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211CrossRefGoogle Scholar
  22. 22.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  23. 23.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  24. 24.
    Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  25. 25.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  26. 26.
    Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  27. 27.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654CrossRefGoogle Scholar
  28. 28.
    Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (1996) Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory. Chem Phys Lett 252:211–220CrossRefGoogle Scholar
  29. 29.
    Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struc-Theochem 464:211–226CrossRefGoogle Scholar
  30. 30.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094CrossRefPubMedGoogle Scholar
  31. 31.
    Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G (2013) SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 25:243–249CrossRefPubMedGoogle Scholar
  32. 32.
    Bruhn T, Schaumlöffel A, Hemberger Y (2015) SpecDis, Version 1.65. University of Würzburg, WürzburgGoogle Scholar
  33. 33.
    Sheldrick G (2015) SHELX––integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8CrossRefGoogle Scholar
  34. 34.
    Sheldrick G (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8CrossRefGoogle Scholar

Copyright information

© Japanese Association of Forensic Toxicology and Springer Japan 2016

Authors and Affiliations

  • Lars Andernach
    • 1
  • Stefan Pusch
    • 1
  • Carina Weber
    • 1
  • Dieter Schollmeyer
    • 1
  • Sascha Münster-Müller
    • 2
  • Michael Pütz
    • 2
  • Till Opatz
    • 1
  1. 1.Institute of Organic ChemistryJohannes Gutenberg University MainzMainzGermany
  2. 2.Bundeskriminalamt–Federal Criminal Police Office (BKA), Forensic Science Institute, KT 34-ToxicologyWiesbadenGermany

Personalised recommendations