Skip to main content
Log in

Structure–activity relationships of synthetic cannabinoid designer drug RCS-4 and its regioisomers and C4 homologues

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

RCS-4 [(4-methoxyphenyl)-1-yl-(1-pentyl-1H-indol-3-yl)methanone] represents the first of several N-alkyl-3-(methoxybenzoyl)indoles identified by forensic scientists as synthetic cannabinoid (SC) designer drugs. Despite the detection of RCS-4 and several analogues (RCS-2, RCS-3, RCS-2-C4, RCS-3-C4, and RCS-4-C4) in products intended for human consumption, relatively little is known about this class of cannabinoids. The synthesis of all regioisomers of RCS-4 and their C4 homologues is described. This study also systematically explored the structure–activity relationships of this class of SCs at human CB1 and CB2 receptors using an in vitro fluorometric imaging plate reader membrane potential assay. All compounds demonstrated agonist activity at CB1 (EC50 = 54–574 nM) and CB2 (EC50 = 4.5–46 nM) receptors, with the C4 homologues showing a preference for CB2 receptors over CB1 receptors (31–42 times). Since most of the analogues (RCS-2, RCS-3, RCS-2-C4, RCS-3-C4 and RCS-4-C4) are not subject to regulation in much of the world, despite their activities towards CB1 and CB2 receptors, there is a possibility that these analogues will emerge on the black market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dresen S, Ferreiros N, Putz M, Westphal F, Zimmermann R, Auwärter V (2010) Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds. J Mass Spectrom 45:1186–1194

    Article  CAS  PubMed  Google Scholar 

  2. Auwärter V, Dresen S, Weinmann W, Muller M, Putz M, Ferreiros N (2009) ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44:832–837

    Article  PubMed  Google Scholar 

  3. Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Seely KA, Lapoint J, Moran JH, Fattore L (2012) Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry 39:234–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mir A, Obafemi A, Young A, Kane C (2011) Myocardial infarction associated with use of the synthetic cannabinoid K2. Pediatrics 128:e1622–e1627

    Article  PubMed  Google Scholar 

  6. Lapoint J, James LP, Moran CL, Nelson LS, Hoffman RS, Moran JH (2011) Severe toxicity following synthetic cannabinoid ingestion. Clin Toxicol 49:760–764

    Article  CAS  Google Scholar 

  7. Simmons J, Cookman L, Kang C, Skinner C (2011) Three cases of “spice” exposure. Clin Toxicol 49:431–433

    Article  CAS  Google Scholar 

  8. Schneir AB, Cullen J, Ly BT (2011) “Spice” girls: synthetic cannabinoid intoxication. J Emerg Med 40:296–299

    Article  PubMed  Google Scholar 

  9. Schneir A, Baumbacher T (2012) Convulsions associated with the use of a synthetic cannabinoid product. J Med Toxicol 8:62–64

    Article  PubMed Central  PubMed  Google Scholar 

  10. Harris CR, Brown A (2013) Synthetic cannabinoid intoxication: a case series and review. J Emerg Med 44:360–366

    Article  PubMed  Google Scholar 

  11. Uchiyama N, Shimokawa Y, Kawamura M, Kikura-Hanajiri R, Hakamatsuka T (2014) Chemical analysis of a benzofuran derivative, 2-(2-ethylaminopropyl)benzofuran (2-EAPB), eight synthetic cannabinoids, five cathinone derivatives, and five other designer drugs newly detected in illegal products. Forensic Toxicol 32:266–281

    Article  CAS  Google Scholar 

  12. European Monitoring Centre for Drugs and Drug Addictions (2014) European Drug Report 2014: trends and developments. Euro Surveill. doi:10.2810/32306

  13. Wilkinson SM, Banister SD, Kassiou M (2015) Bioisosteric fluorine in the clandestine design of synthetic cannabinoids. Aust J Chem 68:4–8

    Article  CAS  Google Scholar 

  14. Nakajima J, Takahashi M, Seto T, Kanai C, Suzuki J, Yoshida M, Hamano T (2011) Identification and quantitation of two benzoylindoles AM-694 and (4-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone, and three cannabimimetic naphthoylindoles JWH-210, JWH-122, and JWH-019 as adulterants in illegal products obtained via the Internet. Forensic Toxicol 29:95–110

    Article  CAS  Google Scholar 

  15. Nakajima J, Takahashi M, Nonaka R, Seto T, Suzuki J, Yoshida M, Kanai C, Hamano T (2011) Identification and quantitation of a benzoylindole (2-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone and a naphthoylindole 1-(5-fluoropentyl-1H-indol-3-yl)-(naphthalene-1-yl)methanone (AM-2201) found in illegal products obtained via the Internet and their cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays. Forensic Toxicol 29:132–141

    Article  CAS  Google Scholar 

  16. Logan BK, Reinhold LE, Xu A, Diamond FX (2012) Identification of synthetic cannabinoids in herbal incense blends in the United States. J Forensic Sci 57:1168–1180

    Article  CAS  PubMed  Google Scholar 

  17. Denooz R, Vanheugen JC, Frederich M, de Tullio P, Charlier C (2013) Identification and structural elucidation of four cannabimimetic compounds (RCS-4, AM-2201, JWH-203 and JWH-210) in seized products. J Anal Toxicol 37:56–63

    Article  CAS  PubMed  Google Scholar 

  18. Choi H, Heo S, Choe S, Yang W, Park Y, Kim E, Chung H, Lee J (2013) Simultaneous analysis of synthetic cannabinoids in the materials seized during drug trafficking using GC–MS. Anal Bioanal Chem 405:3937–3944

    Article  CAS  PubMed  Google Scholar 

  19. Couch RAF, Madhavaram H (2012) Phenazepam and cannabinomimetics sold as herbal highs in New Zealand. Drug Test Anal 4:409–414

    Article  CAS  PubMed  Google Scholar 

  20. Zuba D, Byrska B (2013) Analysis of the prevalence and coexistence of synthetic cannabinoids in “herbal high” products in Poland. Forensic Toxicol 31:21–30

    Article  CAS  Google Scholar 

  21. Simolka K, Lindigkeit R, Schiebel H-M, Papke U, Ernst L, Beuerle T (2012) Analysis of synthetic cannabinoids in “spice-like” herbal highs: snapshot of the German market in summer 2011. Anal Bioanal Chem 404:157–171

    Article  CAS  PubMed  Google Scholar 

  22. Park Y, Lee C, Lee H, Pyo J, Jo J, Lee J, Choi H, Kim S, Hong RS, Park Y, Hwang BY, Choe S, Jung JH (2013) Identification of a new synthetic cannabinoid in a herbal mixture: 1-butyl-3-(2-methoxybenzoyl)indole. Forensic Toxicol 31:187–196

    Article  CAS  Google Scholar 

  23. Chung H, Choi H, Heo S, Kim E, Lee J (2014) Synthetic cannabinoids abused in South Korea: drug identifications by the National Forensic Service from 2009 to June 2013. Forensic Toxicol 32:82–88

    Article  CAS  Google Scholar 

  24. Hutter M, Broecker S, Kneisel S, Auwärter V (2012) Identification of the major urinary metabolites in man of seven synthetic cannabinoids of the aminoalkylindole type present as adulterants in ‘herbal mixtures’ using LC–MS/MS techniques. J Mass Spectrom 47:54–65

    Article  CAS  PubMed  Google Scholar 

  25. Kavanagh P, Grigoryev A, Melnik A, Simonov A (2012) The identification of the urinary metabolites of 3-(4-methoxybenzoyl)-1-pentylindole (RCS-4), a novel cannabimimetic, by gas chromatography–mass spectrometry. J Anal Toxicol 36:303–311

    Article  CAS  PubMed  Google Scholar 

  26. Gandhi AS, Zhu M, Pang S, Wohlfarth A, Scheidweiler KB, Huestis MA (2014) Metabolite profiling of RCS-4, a novel synthetic cannabinoid designer drug, using human hepatocyte metabolism and TOF–MS. Bioanalysis 6:1471–1485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Scheidweiler KB, Huestis MA (2014) Simultaneous quantification of 20 synthetic cannabinoids and 21 metabolites, and semi-quantification of 12 alkyl hydroxy metabolites in human urine by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1327:105–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hutter M, Kneisel S, Auwärter V, Neukamm MA (2012) Determination of 22 synthetic cannabinoids in human hair by liquid chromatography–tandem mass spectrometry. J Chromatogr B 903:95–101

    Article  CAS  Google Scholar 

  29. Sundstroem M, Pelander A, Angerer V, Hutter M, Kneisel S, Ojanperae I (2013) A high-sensitivity ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC–HR-TOFMS) method for screening synthetic cannabinoids and other drugs of abuse in urine. Anal Bioanal Chem 405:8463–8474

    Article  CAS  Google Scholar 

  30. Wohlfarth A, Scheidweiler KB, Chen X, H-f Liu, Huestis MA (2013) Qualitative confirmation of 9 synthetic cannabinoids and 20 metabolites in human urine using LC–MS/MS and library search. Anal Chem 85:3730–3738

    Article  CAS  PubMed  Google Scholar 

  31. Kronstrand R, Brinkhagen L, Birath-Karlsson C, Roman M, Josefsson M (2014) LC–QTOF–MS as a superior strategy to immunoassay for the comprehensive analysis of synthetic cannabinoids in urine. Anal Bioanal Chem 406:3599–3609

    Article  CAS  PubMed  Google Scholar 

  32. Kneisel S, Auwärter V (2012) Analysis of 30 synthetic cannabinoids in serum by liquid chromatography–electrospray ionization tandem mass spectrometry after liquid–liquid extraction. J Mass Spectrom 47:825–835

    Article  CAS  PubMed  Google Scholar 

  33. Kneisel S, Speck M, Moosmann B, Corneillie TM, Butlin NG, Auwärter V (2013) LC/ESI–MS/MS method for quantification of 28 synthetic cannabinoids in neat oral fluid and its application to preliminary studies on their detection windows. Anal Bioanal Chem 405:4691–4706

    Article  CAS  PubMed  Google Scholar 

  34. Kneisel S, Auwärter V, Kempf J (2013) Analysis of 30 synthetic cannabinoids in oral fluid using liquid chromatography–electrospray ionization tandem mass spectrometry. Drug Test Anal 5:657–669

    Article  CAS  PubMed  Google Scholar 

  35. Ammann J, McLaren JM, Gerostamoulos D, Beyer J (2012) Detection and quantification of new designer drugs in human blood: part 1—synthetic cannabinoids. J Anal Toxicol 36:372–380

    Article  CAS  PubMed  Google Scholar 

  36. Ito Y, Kobayashi K, Seko N, Saegusa T (1984) Indole syntheses utilizing o-methylphenyl isocyanides. Bull Chem Soc Jpn 57:73–84

    Article  CAS  Google Scholar 

  37. Blaazer AR, Lange JHM, van der Neut MAW, Mulder A, den Boon FS, Werkman TR, Kruse CG, Wadman WJ (2011) Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB) receptor agonists: design, synthesis, structure–activity relationships, physicochemical properties and biological activity. Eur J Med Chem 46:5086–5098

    Article  CAS  PubMed  Google Scholar 

  38. Bruker (2011) Apex2 suite of programs. Bruker AXS Inc., Madison

    Google Scholar 

  39. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  CAS  PubMed  Google Scholar 

  40. Banister SD, Wilkinson SM, Longworth M, Stuart J, Apetz N, English K, Brooker L, Goebel C, Hibbs DE, Glass M, Connor M, McGregor IS, Kassiou M (2013) The synthesis and pharmacological evaluation of adamantane-derived indoles: cannabimimetic drugs of abuse. ACS Chem Neurosci 4:1081–1092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Banister SD, Stuart J, Kevin RC, Edington A, Longworth M, Wilkinson SM, Beinat C, Buchanan AS, Hibbs DE, Glass M, Connor M, McGregor IS, Kassiou M (2015) The effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem Neurosci. doi:10.1021/acschemneuro.5b00107

    Google Scholar 

  42. Knapman A, Santiago M, Du YP, Bennallack PR, Christie MJ, Connor M (2013) A continuous, fluorescence-based assay of µ-opioid receptor activation in AtT-20 cells. J Biomol Screen 18:269–276

    Article  CAS  PubMed  Google Scholar 

  43. Okauchi T, Itonaga M, Minami T, Owa T, Kitoh K, Yoshino H (2000) A general method for acylation of indoles at the 3-position with acyl chlorides in the presence of dialkylaluminum chloride. Org Lett 2:1485–1487

    Article  CAS  PubMed  Google Scholar 

  44. Grimsey NL, Graham ES, Dragunow M, Glass M (2010) Cannabinoid receptor 1 trafficking and the role of the intracellular pool: implications for therapeutics. Biochem Pharmacol 80:1050–1062

    Article  CAS  PubMed  Google Scholar 

  45. Frost JM, Dart MJ, Tietje KR, Garrison TR, Grayson GK, Daza AV, El-Kouhen OF, Miller LN, Li L, Yao BB, Hsieh GC, Pai M, Zhu CZ, Chandran P, Meyer MD (2008) Indol-3-yl-tetramethylcyclopropyl ketones: effects of indole ring substitution on CB2 cannabinoid receptor activity. J Med Chem 51:1904–1912

    Article  CAS  PubMed  Google Scholar 

  46. Frost JM, Dart MJ, Tietje KR, Garrison TR, Grayson GK, Daza AV, El-Kouhen OF, Yao BB, Hsieh GC, Pai M, Zhu CZ, Chandran P, Meyer MD (2010) Indol-3-ylcycloalkyl ketones: effects of N1 substituted indole side chain variations on CB2 cannabinoid receptor activity. J Med Chem 53:295–315

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work was supported in part by the European Union’s Seventh Framework Programme [FP7/2007–2013] INMiND (Grant agreement No. HEALTH-F2-2011-278850). MC was supported by NHMRC Project Grant 1002680, and JS by an iMQRES Postgraduate Scholarship from Macquarie University.

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kassiou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 12981 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banister, S.D., Stuart, J., Conroy, T. et al. Structure–activity relationships of synthetic cannabinoid designer drug RCS-4 and its regioisomers and C4 homologues. Forensic Toxicol 33, 355–366 (2015). https://doi.org/10.1007/s11419-015-0282-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-015-0282-9

Keywords

Navigation