Skip to main content
Log in

Analysis of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in urine samples by hollow fiber-liquid phase microextraction and gas chromatography–mass spectrometry in consideration of measurement uncertainty

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Marijuana abuse can be detected by means of toxicological analysis of the most important metabolite 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) in urine samples. The aim of this study is the establishment of the detailed procedure for analysis of THC-COOH in urine by combination of hollow fiber-liquid phase microextraction (HF-LPME) and gas chromatography–mass spectrometry (GC–MS). The conditions of hydrolysis and extraction were optimized. The method was shown to be very simple and rapid, and a low amount of organic solvent was necessary for extraction. The limit of detection was 1.5 ng/ml. The calibration curves were linear over the specified range (2.0–170 ng/ml; r 2 > 0.99). The main sources of uncertainty were found to be analyte concentration, accuracy, method precision and sample volume. The effect of the analyte concentration on the overall combined uncertainty was most significant. The developed method was successfully applied to a human urine standard reference material at two levels of concentration. The obtained relative combined uncertainty was 8 %, which can be considered acceptable according to international guidelines. The present method seems very useful in clinical and forensic toxicology, because of its simplicity, rapidness and inexpensiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Papoutsis I, Nikolaou P, Dona A, Pistos C, Stefanidou M, Spiliopoulou C, Athanaselis S (2012) A validated GC–MS method for the determination of Δ9-tetrahydrocannabinol and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in bile samples. Forensic Toxicol 30:51–58

    Article  CAS  Google Scholar 

  2. Fabritius M, Staub C, Mangin P, Giroud C (2013) Analysis of cannabinoids in oral fluid by liquid chromatography–tandem mass spectrometry. Forensic Toxicol 31:151–163

    Article  CAS  Google Scholar 

  3. Namera A, Saito T, Miyazaki S, Ohta S, Oikawa H, Torikoshi A, Shiraishi H, Nagao M (2013) Sequential extraction of amphetamines, opiates, and 11-nor- Δ9-tetrahydrocannabinol-9-carboxylic acid from a limited volume of urine using a monolithic silica spin column coupled with gas chromatography–mass spectrometry. Forensic Toxicol 31:312–321

    Article  CAS  Google Scholar 

  4. Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan until early 2012. Forensic Toxicol 31:44–53

    Article  Google Scholar 

  5. Scheidweiler KB, Desrosiers NA, Huestis MA (2012) Simultaneous quantification of free and glucuronidated cannabinoids in human urine by liquid chromatography tandem mass spectrometry. Clin Chim Acta 413:1839–1847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Felli M, Martello S, Chiarotti M (2011) LC–MS–MS method for simultaneous determination of THCCOOH and THCCOOH-glucuronide in urine: application to workplace confirmation tests. Forensic Sci Int 204:67–73

    Article  CAS  PubMed  Google Scholar 

  7. Lacroix C, Saussereau E (2012) Fast liquid chromatography/tandem mass spectrometry determination of cannabinoids in micro volume blood samples after dabsyl derivatization. J Chromatogr B 905:85–95

    Article  CAS  Google Scholar 

  8. Stephanson N, Josefsson M, Kronstrand R, Beck O (2008) Accurate identification and quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in urine drug testing: evaluation of a direct high efficiency liquid chromatographic–mass spectrometric method. J Chromatogr B 871:101–108

    Article  CAS  Google Scholar 

  9. Racamonde KE, Villaverde-de-Sáa E, Rodil R, Quintana JB, Cela R (2012) Determination of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in water samples by solid-phase microextraction with on-fiber derivatization and gas chromatography-mass spectrometry. J Chromatogr A 1245:167–174

    Article  CAS  PubMed  Google Scholar 

  10. De Brabanter N, Gansbeke WV, Hooghe F, Van Eenoo P (2013) Fast quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THCA) using microwave-accelerated derivatisation and gas chromatography–triple quadrupole mass spectrometry. Forensic Sci Int 224:90–95

    Article  PubMed  Google Scholar 

  11. Jagerdeo E, Montgomery MA, Karas RP, Sibum M (2010) A fast method for screening and/or quantitation of tetrahydrocannabinol and metabolites in urine by automated SPE/LC/MS/MS. Anal Bional Chem 398:329–338

    Article  CAS  Google Scholar 

  12. NIDA (2014) http://www.drugabuse.gov/ Accessed 02 February 2014

  13. Zanchetti G, Floris I, Piccinotti A, Tameni S, Polettini A (2012) Rapid and robust confirmation and quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in urine by column switching LC-MS-MS analysis. J Mass Spectrom 47:124–130

    Article  CAS  PubMed  Google Scholar 

  14. Chebbah C, Pozo OJ, Deventer K, Eenoo PV, Delbeke FT (2010) Direct quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in urine by liquid chromatography/tandem mass spectrometry in relation to doping control analysis. Rapid Commun Mass Spectrom 24:1133–1141

    Article  CAS  PubMed  Google Scholar 

  15. Fernández MMR, Wille SMR, Samyn N, Wood M, Lopes-Rivadulla M, De Boeck G (2009) On-line solid-phase extraction combined with chromatography-tandem mass spectrometry for high throughput analysis of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol acid in urine. J Chromatogr B 877:2153–2157

    Article  Google Scholar 

  16. Robandt PV, Klette KL, Sibum M (2009) Automated solid-phase extraction-liquid chromatography-tandem mass spectrometry analysis of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in human urine specimens: application to a high-throughput urine analysis laboratory. J Anal Toxicol 33:456–460

    Article  CAS  PubMed  Google Scholar 

  17. Chericoni S, Battistini I, Dugheri S, Pacenti M, Giusiani M (2011) Novel method for simultaneous aqueous in situ derivatization of THC and THC-COOH in human urine samples: validation and application to real samples. J Anal Toxicol 35:193–198

    Article  CAS  PubMed  Google Scholar 

  18. Fu S, Lewis J (2008) Novel automated extraction method for quantitative analysis of urinary 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH). J Anal Toxicol 32:292–297

    Article  CAS  PubMed  Google Scholar 

  19. Abraham TT, Lowe RH, Pirnay SO, Darwin WD, Huestis MA (2007) Determination of Δ9-tetrahydrocannabinol, 1-hydroxy-Δ9-tetrahydrocannabinol, and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in human urine following tandem enzyme-alkaline hydrolysis. J Anal Toxicol 31:477–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kumazawa T, Hasegawa C, Lee X-P, Sato K (2010) New and unique methods of solid-phase extraction for use before instrumental analysis of xenobiotics in human specimens. Forensic Toxicol 28:61–68

    Article  CAS  Google Scholar 

  21. Pantaleão LN, Paranhos BAPB, Yonamine M (2007) Hollow-fiber liquid-phase microextraction of amphetamine-type stimulants in human hair samples. J Chromatogr A 1254:1–7

    Article  Google Scholar 

  22. Barroso M, Moreno I, Fonseca B, Queiroz JA, Gallardo E (2012) Role of microextraction sampling procedures in forensic toxicology. Bioanalysis 4:1805–1826

    Article  CAS  PubMed  Google Scholar 

  23. Menck RA, de Oliveira CDR, de Lima DS, Goes LE, Leyton V, Pasqualucci CA, Muñoz DR, Yonamine M (2013) Hollow fiber–liquid phase microextraction of barbiturates in liver samples. Forensic Toxicol 31:31–36

    Article  CAS  Google Scholar 

  24. dos Santos MF, Ferri CC, Seulin SC, Leyton V, Pasqualucci CAG, Muñoz DR, Yonamine M (2014) Determination of antidepressants in whole blood using hollow-fiber liquid-phase microextraction and gas chromatography-mass spectrometry. Forensic Toxicol. doi:10.1007/s11419-014-0226-9

    Google Scholar 

  25. Lee J, Lee H, Rasmussen K, Pedersen-Bjergaard S (2008) Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: a review. Anal Chim Acta 624:253–268

    Article  CAS  PubMed  Google Scholar 

  26. Gullberg RG (2012) Estimating the measurement uncertainty in forensic blood alcohol analysis. J Anal Toxicol 36:153–161

    Article  CAS  PubMed  Google Scholar 

  27. Sklerov JH, Couper FJ (2011) Calculation and verification of blood ethanol measurement uncertainty for headspace gas chromatography. J Anal Toxicol 35:402–410

    Article  CAS  PubMed  Google Scholar 

  28. Lee S, Choi H, Kim E, Choi H, Chung H, Chung KH (2010) Estimation of the measurement uncertainty by the bottom-up approach for the determination of methamphetamine and amphetamine in urine. J Anal Toxicol 34:222–228

    Article  CAS  PubMed  Google Scholar 

  29. EURACHEM/CITAC (2000) Quantifying uncertainty in analytical measurement, 3rd edn. Laboratory of the Government Chemist, London. http://www.pg.gda.pl/chem/Dydaktyka/Analityczna/STAT/Quantyfying%20uncertainity%20in%20analytical%20measurement.pdf. Accessed 10 Jan 2014

  30. UNODC (2009) Guidance for the validation of analytical methodology and calibration of equipment used for testing of illicit drugs in seized material and biological specimens. Laboratory and Scientific Section, United Nations Office on Drugs and Crime, Vienna. http://www.unodc.org/documents/scientific/validation_E.pdf. Accessed 02 May 2014

  31. Peters FT, Maurer HH (2002) Bioanalytical method validation and its implications for forensic and clinical toxicology—a review. Accred Qual Assur 7:441–449

    Article  CAS  Google Scholar 

  32. Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165:216–224

    Article  CAS  PubMed  Google Scholar 

  33. SWGTOX (2013) Standard practices for method validation in forensic toxicology. Revision 1. http://www.swgtox.org/documents/Validation3.pdf. Accessed 02 May 2014

  34. GUM (1995) International organization for standardization. http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. Accessed 10 January 2014

  35. Moon J, Kim JY, Moon MH, Chung BC, In MK, Choi MH (2008) Validated gas chromatographic–mass spectrometric analysis of urinary cannabinoids purified with a calcium-hardened cyclodextrin polymer. J Chromatogr A 1204:87–92

    Article  CAS  PubMed  Google Scholar 

  36. Weinmann W, Goerner M, Vogt S, Goerke R, Pollak S (2001) Fast confirmation of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) in urine by LC/MS/MS using negative atmospheric-pressure chemical ionisation (APCI). Forensic Sci Int 121:103–107

    Article  CAS  PubMed  Google Scholar 

  37. Kim SY, Kim JY, Kwon W, In MK, Kim YE, Paeng K (2013) Method development for simultaneous determination of amphetamine type stimulants and cannabinoids in urine using GC–MS. Microchem J 110:326–333

    Article  CAS  Google Scholar 

  38. Kramer KE, Andrews ARJ (2001) Screening method for 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in urine using hollow fiber membrane solvent microextraction with in-tube derivatization. J Chromatogr B 760:27–36

    Article  CAS  Google Scholar 

  39. Moffat AC, Osselton MD, Widdop B, Watts J (2011) Clarke’s analysis of drugs and poisons. Pharmaceutical Press, London

    Google Scholar 

  40. Pedersen-Bjergaard S, Rasmussen KE (2008) Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid–liquid extraction. J Chromatogr A 1184:132–142

    Article  CAS  PubMed  Google Scholar 

  41. WADA (2010) Technical document TD2010DL. Decision limits for the confirmatory quantification of threshold substances.http://www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-IS-laboratories/Technical_Documents/WADA-TD2010DL-1.0-Decision-Limits-for-Confirmatory-Quantification-of-Threshold-Substances-EN.pdf. Accessed 02 May 2014

Download references

Acknowledgments

The authors acknowledge financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grants no 470829/2012-5, Brazil). The authors also thank Tiago Franco de Oliveira, PhD who prepared the figures.

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Carobini Werner de Souza Eller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Eller, S.C.W., Flaiban, L.G., Paranhos, B.A.P.B. et al. Analysis of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in urine samples by hollow fiber-liquid phase microextraction and gas chromatography–mass spectrometry in consideration of measurement uncertainty. Forensic Toxicol 32, 282–291 (2014). https://doi.org/10.1007/s11419-014-0239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-014-0239-4

Keywords

Navigation