Skip to main content

Advertisement

Log in

Cannabinoids as seed compounds for the cancer treatment

  • Minireview
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

This review presents current knowledge relating to the possible application of cannabinoids as seed compounds for cancer treatment. Cannabinoids are naturally occurring compounds, originally derived from Cannabis sativa L., and a number of phyto-, endo-, and synthetic cannabinoids have become available in recent times. Among them, some phyto- and synthetic cannabinoids have been shown to exert anticancer effects in different in vitro and in vivo experimental models, especially using glioma cell lines, and breast and lung cancer cell lines. These anticancer effects are considered to be exerted selectively toward cancer cells, and normal cells appear to remain unaffected. This selectivity suggests that cannabinoids are potential seed compounds for cancer therapy. The anticancer effects of cannabinoids, the underlying mechanisms, and their future possible use in cancer treatment are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    Article  CAS  Google Scholar 

  2. Todd AR (1940) Chemistry of the hemp drugs. Nature 146:829–830

    Article  CAS  Google Scholar 

  3. Adams R, Loewe S, Jelinek C, Wolff H (1941) Tetrahydrocannabinol homologs with marihuana activity. J Am Chem Soc 63:1971–1973

    Article  CAS  Google Scholar 

  4. Nakajima J, Takahashi M, Seto T, Yoshida M, Kanai C, Suzuki J, Hamano T (2012) Identification and quantitation of two new naphthoylindole drugs-of-abuse, (1-(5-hydroxypentyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone (AM-2202) and (1-(4-pentenyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone, with other synthetic cannabinoids in unregulated “herbal” products circulated in the Tokyo area. Forensic Toxicol 30:33–44

    Article  CAS  Google Scholar 

  5. Zuba D, Byrska B (2013) Analysis of the prevalence and coexistence of synthetic cannabinoids in “herbal high” products in Poland. Forensic Toxicol 31:21–30

    Article  CAS  Google Scholar 

  6. Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan until early 2012. Forensic Toxicol 31:44–53

    Article  Google Scholar 

  7. Nakajima J, Takahashi M, Seto T, Kanai C, Suzuki J, Yoshida M, Uemura N, Hamano T (2013) Analysis of azepane isomers of AM-2233 and AM-1220, and detection of an inhibitor of fatty acid amide hydrolase [3′-(aminocarbonyl)(1,1′-biphenyl)-3-yl]-cyclohexylcarbamate (URB597) obtained as designer drugs in the Tokyo area. Forensic Toxicol 31:76–85

    Article  CAS  Google Scholar 

  8. Uemura N, Fukaya H, Kanai C, Yoshida M, Nakajima J, Takahashi M, Suzuki J, Moriyasu T, Nakae D (2014) Identification of a synthetic cannabinoid A-836339 as a novel compound found in a product. Forensic Toxicol 32:45–50

    Article  CAS  Google Scholar 

  9. Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    CAS  PubMed  Google Scholar 

  10. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  CAS  PubMed  Google Scholar 

  11. Munro S, Kerrie L, Abu-Shaar TM (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  CAS  PubMed  Google Scholar 

  12. Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68–69:619–631

    Article  PubMed  Google Scholar 

  13. Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, Stella N, Makriyannis A, Piomelli D, Davison JS, Marnett LJ, Marzo VD, Pittman QJ, Patel KD, Sharkey KA (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310:329–332

    Article  PubMed  Google Scholar 

  14. Sánchez C, de Ceballos ML, Gomez del Pulgar T, Rueda D, Corbacho C, Velasco G, Galve-Roperh I, Huffman JW, Ramón y Cajal S, Guzmán M (2001) Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res 61:5784–5789

    PubMed  Google Scholar 

  15. Aguado T, Carracedo A, Julien B, Velasco G, Milman G, Mechoulam R, Alvarez L, Guzmán M, Galve-Roperh I (2007) Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. J Biol Chem 282:6854–6862

    Article  CAS  PubMed  Google Scholar 

  16. Blázquez C, Salazar M, Carracedo A, Lorente M, Egia A, González-Feria L, Haro A, Velasco G, Guzmán M (2008) Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer Res 68:1945–1952

    Article  PubMed  Google Scholar 

  17. Salazar M, Carracedo A, Salanueva ÍJ, Hernández-Tiedra S, Lorente M, Egia A, Vázquez P, Blázquez C, Torres S, García S, Nowak J, Fimia GM, Piacentini M, Cecconi F, Pier PP, González-Feria L, Iovanna JL, Guzmán M, Boya P, Velasco G (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119:1359–1372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Massi P, Valenti M, Solinas M, Parolaro D (2010) Molecular mechanisms involved in the antitumor activity of cannabinoids on gliomas: role for oxidative stress. Cancers 26:1013–1026

    Article  Google Scholar 

  19. Lorente M, Torres S, Salazar M, Carracedo A, Hernández-Tiedra S, Rodríguez-Fornés F, García-Taboada E, Meléndez B, Mollejo M, Campos-Martín Y, Lakatosh SA, Barcia J, Guzmán M, Velasco G (2011) Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action. Cell Death Differ 18:959–973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Solinas M, Massi P, Cinquina V, Valenti M, Bolognini D, Gariboldi M, Monti E, Rubino T, Parolaro D (2013) Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS ONE 8:e76918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Caffarel MM, Sarrió D, Palacios J, Guzmán M, Sánchez C (2006) Δ9-Tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res 66:6615–6621

    Article  CAS  PubMed  Google Scholar 

  22. McAllister SD, Christian RT, Horowitz MP, Garcia A, Desprez PY (2007) Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol Cancer Ther 6:2921–2927

    Article  CAS  PubMed  Google Scholar 

  23. Qamri Z, Preet A, Nasser MW, Bass CE, Leone G, Barsky SH, Ganju RK (2009) Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther 8:3117–3129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Caffarel MM, Andradas C, Mira E, Pérez-Gómez E, Cerutti C, Moreno-Bueno G, Flores JM, García-Real I, Palacios J, Mañes S, Guzmán M, Sánchez C (2010) Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol Cancer 9:196–206

    Article  PubMed Central  PubMed  Google Scholar 

  25. Nasser MW, Qamri Z, Deol YS, Smith D, Shilo K, Zou X, Ganju RK (2011) Crosstalk between chemokine receptor CXCR4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion. PLoS ONE 6:e23901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. McAllister SD, Murase R, Christian RT, Lau D, Zielinski AJ, Allison J, Almanza C, Pakdel A, Lee J, Limbad C, Liu Y, Debs RJ, Moore DH, Desprez PY (2011) Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Res Treat 129:37–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Casanova ML, Blázquez C, Martínez-Palacio J, Villanueva C, Fernández-Aceñero MJ, Huffman JW, Jorcano JL, Guzmán M (2003) Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest 111:43–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Blázquez C, Carracedo A, Barrado L, Real PJ, Fernández-Luna JL, Velasco G, Malumbres M, Guzmán M (2006) Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J 20:2633–2635

    Article  PubMed  Google Scholar 

  29. Munson AE, Harris LS, Friedman MA, Dewey WL, Carchman RA (1975) Antineoplastic activity of cannabinoids. J Natl Cancer Inst 55:597–602

    CAS  PubMed  Google Scholar 

  30. Bonhaus DW, Chang LK, Kwan J, Martin GR (1998) Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses. J Pharmacol Exp Ther 287:884–888

    CAS  PubMed  Google Scholar 

  31. Demuth DG, Molleman A (2006) Cannabinoid signaling. Life Sci 78:549–563

    Article  CAS  PubMed  Google Scholar 

  32. Derkinderen P, Toutant M, Burgaya F, Le Bert M, Siciliano JC, de Franciscis V, Gelman M, Girault JA (1996) Regulation of a neuronal form of focal adhesion kinase by anandamide. Science 273:1719–1722

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Gao B, Mirshahi F, Sanyal AJ, Khanolkar AD, Makriyannis A, Kunos G (2000) Functional CB1 cannabinoid receptors in human vascular endothelial cells. Biochem J 346:835–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Rueda D, Galve-Roperth I, Haro A, Guzmán M (2000) The CB1 cannabinoid receptor is coupled to the activation of c-Jun N-terminal kinase. Mol Pharmacol 58:814–820

    CAS  PubMed  Google Scholar 

  35. Gómez del Pulgar T, Velasco G, Guzmán M (2000) The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J 347:369–373

    Article  PubMed Central  PubMed  Google Scholar 

  36. Pertwee RG, Howlett AC, Abood SP, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International union of basic and clinical pharmacology LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Parolaro D, Massi P (2008) Cannabinoids as potential new therapy for the treatment of gliomas. Expert Rev Neurother 8:37–49

    Article  CAS  PubMed  Google Scholar 

  38. Nieder C, Adam M, Molls M, Grosu AL (2006) Therapeutic options for recurrent high-grade glioma in adult patients: recent advances. Crit Rev Oncol Hematol 60:181–193

    Article  PubMed  Google Scholar 

  39. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed Central  PubMed  Google Scholar 

  40. Sánchez C, Galve-Roperh I, Canova C, Brachet P, Guzmán M (1998) Δ9-Tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Lett 436:6–10

    Article  PubMed  Google Scholar 

  41. Galve-Roperh I, Sánchez C, Cortés ML, del Pulgar TG, Izquierdo M, Guzmán M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6:313–319

    Article  CAS  PubMed  Google Scholar 

  42. Guzmán M, Duarte MJ, Blázquez C, Ravina J, Rosa MC, Galve-Roperh I, Sánchez C, Velasco G, González-Feria L (2006) A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br J Cancer 95:197–203

    Article  PubMed Central  PubMed  Google Scholar 

  43. Sánchez C, de Ceballos ML, Gomez del Pulgar T, Rueda D, Corbacho C, Velasco G, Galve-Roperh I, Huffman JW, Ramón y Cajal S, Guzmán M (2001) Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res 61:5784–5789

    PubMed  Google Scholar 

  44. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International union of pharmacology XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    Article  CAS  PubMed  Google Scholar 

  45. Massi P, Vaccani A, Ceruti S, Colombo A, Abbracchio MP, Parolaro D (2004) Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J Pharmacol Exp Ther 308:838–845

    Article  CAS  PubMed  Google Scholar 

  46. Marcu JP, Christian RT, Lau D, Zielinski AJ, Horowitz MP, Lee J, Pakdel A, Allison J, Limbad C, Moore DH, Yount GL, Desprez PY, McAllister SD (2010) Cannabidiol enhances the inhibitory effects of Δ9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol Cancer Ther 9:180–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  48. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Progress vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  CAS  PubMed  Google Scholar 

  49. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  CAS  PubMed  Google Scholar 

  50. Blázquez C, Casanova ML, Planas A, Gómez Del Pulgar T, Villanueva C, Fernández-Aceñero MJ, Aragonés J, Huffman JW, Jorcano JL, Guzmán M (2003) Inhibition of tumor angiogenesis by cannabinoids. FASEB J 17:529–531

    PubMed  Google Scholar 

  51. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356–5362

    Article  CAS  PubMed  Google Scholar 

  52. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 1:1311–1333

    Article  Google Scholar 

  53. Blázquez C, Gonzalez-Feria L, Álvarez L, Haro A, Casanova ML, Guzmán M (2004) Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. Cancer Res 64:5617–5623

    Article  PubMed  Google Scholar 

  54. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  55. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34

    Article  CAS  PubMed  Google Scholar 

  56. Overall CM, Kleifeld O (2006) Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239

    Article  CAS  PubMed  Google Scholar 

  57. Roomi MW, Monterrey JC, Kalinovsky T, Rath M, Niedzwiecki A (2009) Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncol Rep 21:1323–1333

    CAS  PubMed  Google Scholar 

  58. Guzmán M (2003) Cannabinoids: potential anticancer agents. Nat Rev Cancer 3:745–755

    Article  PubMed  Google Scholar 

  59. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Purow B, Schiff D (2009) Advances in the genetics of glioblastoma: are we reaching critical mass? Nat Rev Neurol 5:419–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Robson PJ (2014) Therapeutic potential of cannabinoid medicines. Drug Test Anal 6:24–30

    Article  CAS  PubMed  Google Scholar 

  62. Schlatter J, Chiadmi F, Chariot P (2012) Spice in France: mixed herbs containing synthetic cannabinoids. Ann Biol Clin (Paris) 70:413–422

    CAS  Google Scholar 

  63. Logan BK, Reinhold LE, Xu A, Diamond FX (2012) Identification of synthetic cannabinoids in herbal incense blends in the United States. J Forensic Sci 57:1168–1180

    Article  CAS  PubMed  Google Scholar 

  64. Chung H, Choi H, Heo S, Kim E, Lee J (2014) Synthetic cannabinoids abused in South Korea: drug identifications by the National Forensic Service from 2009 to June 2013. Forensic Toxicol 32:82–88

    Article  CAS  Google Scholar 

  65. Nakajima J, Nakae D, Yasukawa K (2013) Structure-dependent inhibitory effects of synthetic cannabinoids against 12-O-tetradecanoylphobol-13-acetate (TPA)-induced inflammation and skin tumour promotion in mice. J Pharm Pharmacol 65:1223–1230

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Yasukawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasukawa, K. Cannabinoids as seed compounds for the cancer treatment. Forensic Toxicol 32, 189–193 (2014). https://doi.org/10.1007/s11419-014-0234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-014-0234-9

Keywords

Navigation