Advertisement

Forensic Toxicology

, Volume 32, Issue 1, pp 59–67 | Cite as

Metabolism of the newly encountered designer drug α-pyrrolidinovalerophenone in humans: identification and quantitation of urinary metabolites

  • Noriaki Shima
  • Munehiro Katagi
  • Hiroe Kamata
  • Shuntaro Matsuta
  • Keiko Sasaki
  • Tohru Kamata
  • Hiroshi Nishioka
  • Akihiro Miki
  • Michiaki Tatsuno
  • Kei Zaitsu
  • Akira Ishii
  • Takako Sato
  • Hitoshi Tsuchihashi
  • Koichi Suzuki
Original Article

Abstract

Urinary metabolites of α-pyrrolidinovalerophenone (α-PVP) in humans were investigated by analyzing urine specimens obtained from abusers. Unambiguous identification and accurate quantification of major metabolites were realized using gas chromatography–mass spectrometry and liquid chromatography-tandem mass spectrometry with newly synthesized authentic standards. Two major metabolic pathways were revealed: (1) the reduction of the β-keto moiety to 1-phenyl-2-(pyrrolidin-1-yl)pentan-1-ol (OH-α-PVP, diastereomers) partly followed by conjugation to its glucuronide, and (2) the oxidation at the 2″-position of the pyrrolidine ring to α-(2″-oxo-pyrrolidino)valerophenone (2″-oxo-α-PVP) via the putative intermediate α-(2″-hydroxypyrrolidino)valerophenone (2″-OH-α-PVP). Of the metabolites retaining the structural characteristics of the parent drug, OH-α-PVP was most abundant in most of the specimens examined.

Keywords

α-PVP metabolism Cathinone drug 1-Phenyl-2-(pyrrolidin-1-yl)pentan-1-ol (OH-α-PVP) (2″-Oxo-pyrrolidino)valerophenone (2″-oxo-α-PVP) LC–MS–MS Urine 

Notes

Acknowledgments

The authors would like to thank Prof. Dr. Iwamura (Matsuyama University) for his valuable suggestions in synthesizing the standards.

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

References

  1. 1.
    Sauer S, Peters FT, Haas C, Meyer MR, Fritschi G, Maurer HH (2009) New designer drug α-pyrrolidinovalerophenone (PVP): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 44:952–964PubMedCrossRefGoogle Scholar
  2. 2.
    Shin H-S, Shin Y-SO, Lee S, Park B–B (1996) Detection and identification of pyrovalerone and its hydroxylated metabolite in the rat. J Anal Toxicol 20:568–572PubMedCrossRefGoogle Scholar
  3. 3.
    Jane MP, Lewis SN (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8:33–42CrossRefGoogle Scholar
  4. 4.
    Meyer MR, Du P, Schuster F, Maurer HH (2010) Studies on the metabolism of the α-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC–MS and LC-high resolution MS and its detectability in urine by GC–MS. J Mass Spectrom 45:1426–1442PubMedCrossRefGoogle Scholar
  5. 5.
    Springer D, Fritschi G, Maurer HH (2002) Metabolism and toxicological detection of the new designer drug 4′-methyl-alpha-pyrrolidinopropiophenone in urine using gas chromatography-mass spectrometry. J Chromatogr B 773:25–33CrossRefGoogle Scholar
  6. 6.
    Springer D, Fritschi G, Maurer HH (2003) Metabolism of the new designer drug 3′,4′-methylenedioxy-alpha-pyrrolidinopropiophenone studied in urine using gas chromatography–mass spectrometry. J Chromatogr B 793:377–388CrossRefGoogle Scholar
  7. 7.
    Meltzer PC, Butler D, Deschamps JR, Madras BK (2006) 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (pyrovalerone) analogs: a promising class of monoamine uptake inhibitors. J Med Chem 49:1420–1432PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ammann D, McLaren JM, Gerostamoulos D, Beyer J (2012) Detection and quantification of new designer drugs in human blood: part 2—designer cathinones. J Anal Toxicol 36:381–389PubMedCrossRefGoogle Scholar
  9. 9.
    Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan until early 2012. Forensic Toxicol 31:44–53CrossRefGoogle Scholar
  10. 10.
    Namera A, Nakamoto A, Saito T, Nagao M (2011) Colorimetric detection and chromatographic analyses of designer drugs in biological materials: a comprehensive review. Forensic Toxicol 29:1–24CrossRefGoogle Scholar
  11. 11.
    Namera A, Urabe S, Saito T, Torikoshi-Hatano A, Shiraishi H, Arima Y, Nagao M (2013) A fatal case of 3,4-methylenedioxypyrovalerone poisoning: coexistence of α-pyrrolidinobutiophenone and α-pyrrolidinovalerophenone in blood and/or hair. Forensic Toxicol 31:338–343CrossRefGoogle Scholar
  12. 12.
    Saito T, Namera A, Osawa M, Aoki H, Inokuchi S (2013) SPME–GC–MS analysis of α-pyrrolidinovalerophenone in blood in a fatal poisoning case 31:328–332CrossRefGoogle Scholar
  13. 13.
    Kamata HT, Shima N, Zaitsu K, Kamata T, Miki A, Nishikawa M, Katagi M, Tsuchihashi H (2006) Metabolism of the recently encountered designer drug, methylone, in humans and rats. Xenobiotica 36:709–723PubMedCrossRefGoogle Scholar
  14. 14.
    Zaitsu K, Katagi M, Kamata HT, Kamata T, Shima N, Miki A, Tsuchihashi H, Mori Y (2009) Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci Int 188:131–139PubMedCrossRefGoogle Scholar
  15. 15.
    Zaitsu K, Katagi M, Tatsuno M, Sato T, Tsuchihashi H, Suzuki K (2011) Recently abused β-keto derivates of 3,4-methylenedioxyphenylalkylamines: a review of their metabolisms and toxicological analysis. Forensic Toxicol 29:73–84CrossRefGoogle Scholar
  16. 16.
    Shima N, Katagi M, Kamata H, Matsuta S, Nakanishi K, Zaitsu K, Kamata T, Nishioka H, Miki A, Tatsuno M, Sato T, Tsuchihashi H, Suzuki K (2013) Urinary excretion and metabolism of the newly encountered designer drug 3,4-dimethylmethcathinone in humans. Forensic Toxicol 31:101–112CrossRefGoogle Scholar
  17. 17.
    Meyer MR, Wilhelm J, Peters FT, Maurer HH (2010) Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Anal Bioanal Chem 397:1225–1233PubMedCrossRefGoogle Scholar
  18. 18.
    Morita M, Ando H (1983) Analysis of methamphetamine and its metabolites in urine from a habitual user of the stimulant (in Japanese with English abstract). Eisei Kagaku 29:318–322CrossRefGoogle Scholar
  19. 19.
    Imamura Y, Kojima Y, Higuchi T, Akita H, Oishi T, Otagiri M (1989) Stereoselective reduction of acetohexamide in cytosol of rabbit liver. J Pharmacobiodyn 12:731–735PubMedCrossRefGoogle Scholar
  20. 20.
    Kobana K, Watanabe K, Kimura T, Matsunaga T, Kondo S, Yamamoto I (2000) A carbonyl reductase-catalyzing reduction of N 3-phenacyluridine in rabbit liver. Biol Pharm Bull 23:917–921PubMedCrossRefGoogle Scholar
  21. 21.
    Hukkanen J, Jacob P III, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115PubMedCrossRefGoogle Scholar
  22. 22.
    Brenneisen R, Geisshüsler S, Schorno X (1986) Metabolism of cathinone to (−)-norephedrine and (−)-norpseudoephedrine. J Pharm Pharmacol 38:298–300PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Association of Forensic Toxicology and Springer Japan 2013

Authors and Affiliations

  • Noriaki Shima
    • 1
  • Munehiro Katagi
    • 1
  • Hiroe Kamata
    • 1
  • Shuntaro Matsuta
    • 1
  • Keiko Sasaki
    • 1
  • Tohru Kamata
    • 1
  • Hiroshi Nishioka
    • 1
  • Akihiro Miki
    • 1
  • Michiaki Tatsuno
    • 1
  • Kei Zaitsu
    • 2
  • Akira Ishii
    • 2
  • Takako Sato
    • 3
  • Hitoshi Tsuchihashi
    • 3
  • Koichi Suzuki
    • 3
  1. 1.Forensic Science LaboratoryOsaka Prefectural Police HeadquartersOsakaJapan
  2. 2.Department of Legal Medicine and BioethicsNagoya University Graduate School of MedicineNagoyaJapan
  3. 3.Division of Preventive and Social Medicine, Department of Legal MedicineOsaka Medical CollegeTakatsukiJapan

Personalised recommendations