Skip to main content

Advertisement

Log in

Detection of saxitoxin in counterterrorism using a commercial lateral flow immunoassay kit

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

The neurotoxin saxitoxin (STX) is registered in the list of the Chemical Weapons Convention. In preparation against potential terrorism by STX use, we investigated the performance of a commercially available rapid test kit for paralytic shellfish poisoning (PSP), which is essentially a lateral flow immunoassay kit. Pink lines in the test and control zones appeared after 35 min and were observed by the naked eye and were recorded by a digital scanner. The competitive displacement of gold-labeled antitoxin analog antibody by STX in the test zone was quantitatively shown using the ratio of the intensity of the test zone line to that of control zone line. As the STX concentration increased, the intensity of the pink line in the test zone on the strip decreased. The limit of detection was defined as the STX concentration that gave a ratio half that of the STX blank test, and was calculated to be about 12 ng/ml. Various matrix components, such as wheat flour and the decontamination chemical hypochlorite, were examined for their effects on false positive and false negative results in the determination of STX by the PSP Rapid Test system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Seto Y, Tsunoda N, Kataoka M, Tsuge K, Nagano T (2000) Toxicological analysis of victim’s blood and crime scene evidence samples in the sarin gas attack caused by the Aum Shinrikyo cult. In: Tu AT, Gaffield W (eds) Natural and selected synthetic toxins––biological implications. American Chemical Society, Washington, DC, pp 318–332

    Google Scholar 

  2. Inglesby TV, O’Toole T, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Friedlander AM, Gerberding J, Hauer J, Hughes J, McDade J, Osterholm MT, Parker G, Perl TM, Russell PK, Tonat K (2002) Anthrax as a biological weapon. J Am Med Assoc 287:2236–2252

    Article  Google Scholar 

  3. La Scola B, Fournier PE, Raoult D (2003) Searching for Bacillus anthracis in suspect powders: a French experience. J Clin Microbiol 41:524

    Article  PubMed  Google Scholar 

  4. Society for Countermeasure against Chemical, Biological, Radiological, Nuclear and Explosive Terrorism (2008) Nuclear, biological and chemical terrorism countermeasure handbook (in Japanese). Shindan To Chiryo Sha, Tokyo

  5. Fujinami Y, Kataoka M, Matsushita K, Sekiguchi H, Itoi T, Tsuge K, Seto Y (2004) Sensitive detection of bacteria and spores using a portable bioluminescence ATP measurement assay system distinguishing from white powder materials. J Health Sci 50:126–132

    Article  CAS  Google Scholar 

  6. Itoi T, Kataoka M, Seto Y, Kawahara K, Iijima J (2004) On-site method for detecting bacteria using flow cytometer (in Japanese with English abstract). Jpn J Sci Technol Ident 9:9–18

    Article  Google Scholar 

  7. Iura K, Tsuge K, Seto Y, Sato A (2004) Detection of proteinous toxins using the Bio Threat Alert system. Jpn J Forensic Toxicol 22:13–16

    CAS  Google Scholar 

  8. Tsuge K, Ohsawa I, Matsushita K, Sekiguchi H, Seto Y, Sato A (2005) Detection of proteinous toxins using the Bio Threat Alert system. 2. Response to high levels of toxins and interference by colored sample matrix. Jpn J Forensic Toxicol 23:18–20

    CAS  Google Scholar 

  9. Sano Y, Yamashiro S, Komano A, Maruko H, Sekiguchi H, Takayama Y, Sekioka R, Tsuge K, Ohsawa I, Kanamori-Kataoka M, Seto Y, Sato A (2007) Detection of proteinous toxins using the Bio-Threat Alert system, Part 3. Effects of heat pretreatment and interfering substances. Forensic Toxicol 25:76–79

    Article  CAS  Google Scholar 

  10. Yamashiro S, Sano Y, Komano A, Maruko H, Sekiguchi H, Takayama Y, Sekioka R, Tsuge K, Ohsawa I, Kanamori-Kataoka M, Seto Y, Sato A (2007) Detection of proteinous toxins using the Bio-Threat Alert system, Part 4. Differences in test strip manufacturing lot and toxin subtype detectability. Forensic Toxicol 25:80–83

    Article  CAS  Google Scholar 

  11. Seto Y, Maruko H, Sekiguchi H, Sano Y, Yamashiro S, Matsushita K, Sekiguchi H, Itoi T, Iura K, Kanamori-Kataoka M, Tsuge K, Ohsawa I (2007) Development of an on-site detection method for chemical and biological warfare agents. J Toxicol Toxin Rev 26:299–312

    CAS  Google Scholar 

  12. Yamaguchi S, Asada R, Kishi S, Sekioka R, Kitagawa N, Tokita K, Yamamoto S, Seto Y (2010) Detection performance of a portable ion mobility spectrometer with 63Ni radioactive ionization for chemical warfare agents. Forensic Toxicol 28:84–95

    Article  CAS  Google Scholar 

  13. Uzawa H, Ohga K, Shinozaki Y, Ohsawa I, Nagatsuka T, Seto Y, Nishida Y (2008) A novel sugar-probe biosensor for the deadly plant proteinous toxin, ricin. Biosens Bioelectron 24:929–933

    Article  PubMed  Google Scholar 

  14. Inami H, Tsuge K, Matsuzawa M, Sasaki Y, Togashi S, Komano A, Seto Y (2009) Semi-automated bacterial spore detection system with micro-fluidic chips for aerosol collection, spore treatment and ICAN DNA detection. Biosens Bioelectron 24:3299–3305

    Article  CAS  PubMed  Google Scholar 

  15. Kodama M (2000) Paralytic shellfish poisoning: ecology, classification, and origin. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Dekker, New York, pp 125–149

    Google Scholar 

  16. LeDoux M, Hall S (2000) Proficiency testing of eight French laboratories in using the AOAC mouse bioassay for paralytic shellfish poisoning: interlaboratory collaborative study. J AOAC Int 83:305–310

    CAS  PubMed  Google Scholar 

  17. Ruberu SR, Liu Y-G, Wong CT, Perera SK, Langlois GW, Doucette GJ, Powell CL (2003) Receptor binding assay for paralytic shellfish toxins: optimization and interlaboratory comparison. J AOAC Int 86:737–745

    CAS  PubMed  Google Scholar 

  18. Usleber E, Dietrich R, Burk C, Schneider E, Martlbauer E (2001) Immunoassay methods for paralytic shellfish poisoning toxins. J AOAC Int 84:1649–1656

    CAS  PubMed  Google Scholar 

  19. Okumura M, Tsuzuki H, Tomita B (2005) A rapid detection method for paralytic shellfish poisoning toxins by cell bioassay. Toxicon 46:93–98

    Article  CAS  PubMed  Google Scholar 

  20. Lawrence JF, Niedzwiadek B (2001) Quantitative determination of paralytic shellfish poisoning toxins in shellfish by using prechromatographic oxidation and liquid chromatography with fluorescence detection. J AOAC Int 84:1099–1108

    CAS  PubMed  Google Scholar 

  21. Bire R, Krys S, Fremy J-M, Dragacci S (2003) Improved solid-phase extraction procedure in the analysis of paralytic selfish poisoning toxins by liquid chromatography with fluorescence detection. J Agric Food Chem 51:6386–6390

    Article  CAS  PubMed  Google Scholar 

  22. Indrasena WM, Ackman RG, Gill TA (1999) Separation of paralytic shellfish toxins on Chromarods-SIII by thin-layer chromatography with the Iatroscan (mark 5) and flame thermionic detection. J Chromatogr A 855:657–668

    Article  CAS  PubMed  Google Scholar 

  23. Thibault P, Pleasance S, Laycock MV (1992) Analysis of paralytic shellfish poisons by capillary electrophoresis. J Chromatogr 542:483–501

    Article  Google Scholar 

  24. Pleasance S, Ayer SW, Laycock MV, Thibault P (1992) Ionspray mass spectrometry of marine toxins. III. Analysis of paralytic shellfish poisoning toxins by flow-injection analysis, liquid chromatography/mass spectrometry and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 6:14–24

    Article  CAS  PubMed  Google Scholar 

  25. Dell’Aversano C, Hess P, Quilliam MA (2005) Hydrophilic interaction liquid chromatography-mass spectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins. J Chromatogr A 1081:190–201

    Article  PubMed  Google Scholar 

  26. Johnson RC, Zhou Y, Statler K, Thomas J, Cox F, Hall S, Barr JR (2009) Quantification of saxitoxin and neosaxitoxin in human urine utilizing isotope dilution tandem mass spectrometry. J Anal Toxicol 33:8–14

    CAS  PubMed  Google Scholar 

  27. Fonfria ES, Vilarino N, Campbell K, Elliott C, Haughey SA, Ben-Gigirey B, Vieites JM, Kawatsu K, Botana LM (2007) Paralytic shellfish poisoning detection by surface plasmon resonance-based biosensors in shellfish matrixes. Anal Chem 79:6303–6311

    Article  CAS  PubMed  Google Scholar 

  28. Enserink M (2001) Anthrax. Biodefense hampered by inadequate tests. Science 294:1266–1267

    Article  CAS  PubMed  Google Scholar 

  29. Jellet JF, Roberts RL, Laycock MV, Quilliam MA, Barrett RE (2002) Detection of paralytic shellfish poisoning (PSP) toxins in shellfish tissue using MIST Alert™, a new rapid test®, in parallel with the regulatory AOAC mouse bioassay. Toxicon 40:1407–1425

    Article  Google Scholar 

  30. Mackintosh FH, Gallacher S, Shankes AM, Smith EA (2002) Assessment of MIST Alert™, a commercial qualitative assay for detection of paralytic shellfish toxins in bivalve mollusks. J AOAC Int 85:632–641

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Seto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komano, A., Maruko, H., Sekiguchi, H. et al. Detection of saxitoxin in counterterrorism using a commercial lateral flow immunoassay kit. Forensic Toxicol 29, 38–43 (2011). https://doi.org/10.1007/s11419-010-0102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-010-0102-1

Keywords

Navigation