Forensic Toxicology

, Volume 27, Issue 2, pp 67–74 | Cite as

Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant “kratom” (Mitragyna speciosa) by LC-ESI-MS

  • Ruri Kikura-Hanajiri
  • Maiko Kawamura
  • Takuro Maruyama
  • Mariko Kitajima
  • Hiromitsu Takayama
  • Yukihiro Goda
Original Article

Abstract

The leaves of Mitragyna speciosa, a tropical plant known as “kratom,” have been traditionally used as a substitute for opium in Thailand and Malaysia. Mitragynine, a major constituent of M. speciosa, has an opioid agonistic activity, and its derivative 7-hydroxymitragynine (7-OH-mitragynine) (a minor constituent) is much more potent than mitragynine or morphine. Recently, many products containing this plant have been distributed as “incense” on the drug market in Japan for their expected narcotic effects. Despite their potency and their wide distribution for abuse, there are no reports on the quantitative analysis of mitragynine and 7-OH-mitragynine in the raw materials or in the commercial products of kratom. In this study, a method for simultaneous analysis of mitragynine, 7-OH-mitragynine, and other indole alkaloids (speciogynine, speciociliatine, and paynantheine), present in the raw materials and commercial products of kratom, was developed using liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS). By this method, mitragynine, 7-OH-mitragynine, and the other alkaloids were detected in 11 of the 13 products. The content of mitragynine in the products ranged from 1% to 6%, and that of 7-OH-mitragynine from 0.01% to 0.04%. Because 7-OH-mitragynine is much more potent than morphine, M. speciosa abuse is a matter of major concern. The present analytical method is considered useful for the screening of M. speciosa products in the drug market.

Keywords

Mitragynine 7-Hydroxymitragynine Mitragyna speciosa Kratom Opioid agonist LC-MS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kikura-Hanajiri R, Hayashi M, Saisho K, Goda Y (2005). Simultaneous determination of 19 hallucinogenic tryptamines/β-calbolines and phenethylamines using GC-MS and LC-ESIMS. J Chromatogr B 825:29–37CrossRefGoogle Scholar
  2. 2.
    Kikura-Hanajiri R, Kawamura M, Uchiyama N, Ogata J, Kamakura H, Saisho K, Goda Y (2008). Analytical data of designated substances (Shitei-Yakubutsu) controlled by the Pharmaceutical Affairs Law in Japan, part I: GC-MS and LC-MS. Yakugaku Zasshi 128:971–979PubMedCrossRefGoogle Scholar
  3. 3.
    Uchiyama N, Kawamura M, Kamakura H, Kikura-Hanajiri R, Goda Y (2008). Analytical data of designated substances (Shitei-Yakubutsu) controlled by the Pharmaceutical Affairs Law in Japan, part II: color test and TLC. Yakugaku Zasshi 128:981–987PubMedCrossRefGoogle Scholar
  4. 4.
    Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y (2008). Analysis of designer drugs detected in the products purchased in fiscal year 2006. Yakugaku Zasshi 128:1499–1505PubMedCrossRefGoogle Scholar
  5. 5.
    Min JZ, Shimizu Y, Toyoóka T, Inagaki S, Kikura-Hanajiri R, Goda Y (2008). Simultaneous determination of 11 designated hallucinogenic phenethylamines by ultra-fast liquid chromatography with fluorescence detection. J Chromatogr B 873:187–194CrossRefGoogle Scholar
  6. 6.
    Maruyama T, Kamakura H, Kikura-Hanajiri R, Goda Y (2008). Authentication and ultra performance liquid chromatography (UPLC)/MS analysis of magic mint, Salvia divinorum and its related plants. Yakugaku Zasshi 128:179–183PubMedCrossRefGoogle Scholar
  7. 7.
    Kawamura M, Kikura-Hanajiri R, Goda Y (2008). Survey of current trends in the abuse of psychotropic plants using LCMS. Jpn J Food Chem 15:73–78Google Scholar
  8. 8.
    Takayama H, Aimi N, Sakai S (2000). Chemical studies on the analgesic indole alkaloids from the traditional medicine (Mitragyna speciosa) used for opium substitute. Yakugaku Zasshi 120:959–967PubMedGoogle Scholar
  9. 9.
    Takayama H (2004). Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chem Pharm Bull 52:916–928PubMedCrossRefGoogle Scholar
  10. 10.
    Ponglux D, Wongseripipatana S, Takayama H, Kikuchi M, Kurihara M, Kitajima M, Aimi N, Sakai S (1994). A new indole alkaloid, 7 alpha-hydroxy-7H-mitragynine, from Mitragyna speciosa in Thailand. Planta Med 60:580–581PubMedCrossRefGoogle Scholar
  11. 11.
    Matsumoto K, Mizowaki M, Suchitra T, Takayama H, Sakai S, Aimi N, Watanabe H (1996). Antinociceptive action of mitragynine in mice: evidence for the involvement of supraspinal opioid receptors. Life Sci 59:1149–1155PubMedCrossRefGoogle Scholar
  12. 12.
    Thongpradichote S, Matsumoto K, Tohda M, Takayama H, Aimi N, Sakai S, Watanabe H (1998). Identification of opioid receptor subtypes in antinociceptive actions of supraspinally administered mitragynine in mice. Life Sci 62:1371–1378PubMedCrossRefGoogle Scholar
  13. 13.
    Matsumoto K, Horie S, Ishikawa H, Takayama H, Aimi N, Ponglux D, Watanabe K (2004). Antinociceptive effect of 7-hydroxymitragynine in mice: discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa. Life Sci 74:2143–2155PubMedCrossRefGoogle Scholar
  14. 14.
    Horie S, Koyama F, Takayama H, Ishikawa H, Aimi N, Ponglux D, Matsumoto K, Murayama T (2005). Indole alkaloids of a Thai medicinal herb, Mitragyna speciosa, that has opioid agonistic effect in guinea-pig ileum. Planta Med 71:231–236PubMedCrossRefGoogle Scholar
  15. 15.
    Matsumoto K, Horie S, Takayama H, Ishikawa H, Aimi N, Ponglux D, Murayama T, Watanabe K (2005). Antinociception, tolerance and withdrawal symptoms induced by 7-hydroxymitragynine, an alkaloid from the Thai medicinal herb Mitragyna speciosa. Life Sci 78:2–7PubMedCrossRefGoogle Scholar
  16. 16.
    Matsumoto K, Hatori Y, Murayama T, Tashima K, Wongseripipatana S, Misawa K, Kitajima M, Takayama H, Horie S (2006). Involvement of mu-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa. Eur J Pharmacol 549:63–70PubMedCrossRefGoogle Scholar
  17. 17.
    Maruyama T, Kawamura M, Kikura-Hanajiri R, Takayama H, Goda Y (2009). The botanical origin of Kratom (Mitragyna speciosa; Rubiaceae) available as abused drugs in the Japanese markets. J Nat Med. doi:10.1007/s11418-009-0325-9Google Scholar
  18. 18.
    Kitajima M, Nakayama T, Kogure N, Wongseripipatana S, Takayama H (2007). New heteroyohimbine-type oxindole alkaloid from the leaves of Thai Mitragyna hirsute. J Nat Med 61:192–195CrossRefGoogle Scholar

Copyright information

© Japanese Association of Forensic Toxicology 2009

Authors and Affiliations

  • Ruri Kikura-Hanajiri
    • 1
  • Maiko Kawamura
    • 1
  • Takuro Maruyama
    • 1
  • Mariko Kitajima
    • 2
  • Hiromitsu Takayama
    • 2
  • Yukihiro Goda
    • 1
  1. 1.National Institute of Health SciencesSetagaya-ku, TokyoJapan
  2. 2.Department of Biofunctional Molecular Chemistry, Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan

Personalised recommendations