Skip to main content
Log in

Proposal for structure revision of pinofuranoxin A through total syntheses of stereoisomers

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The relative configuration of the epoxide functionality in pinofuranoxin A (1), α-alkylidene-β-hydroxy-γ-methyl-γ-butyrolactone with trans-epoxy side chain isolated by Evidente et al. in 2021, was revised by DFT-based spectral reinvestigations and stereo-controlled synthesis. The present investigation demonstrates the difficulty of the configurational elucidation of the stereogenic centers on the conformationally flexible acyclic side-chains. Sharpless’s enantioselective epoxidations and dihydroxylations were quite effective in the reinvestigations of the configurations. As our syntheses made all diastereomers available, these would be quite effective in the next structure-biological activity relationship studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1.
Scheme 2.
Fig. 3

Similar content being viewed by others

References

  1. Takeda K, Sakurawi K, Ishii H (1972) Components of the Lauraceae family-I: New lactonic compounds from Litsea japonicia. Tetrahedron 28:3757–3766

    Article  CAS  Google Scholar 

  2. Niwa M, Iguchi M, Yamamura S (1975) Three new obtusilactones from Lindera obtusiloba blume. Chem Lett 4:655–658

    Article  Google Scholar 

  3. Niwa M, Iguchi M, Yamamura S (1977) The isolation and structure of C19-ontusilactone dimer. Chem Lett 6:581–582

    Article  Google Scholar 

  4. Martine VCJ, Yoshida M, Gottlieb OR (1979) Six groups of ω-ethenyl- and ω-ethynyl-α-alkylidene-γ-lactones. Tetrahedron Lett 12:1021–1024

    Article  Google Scholar 

  5. Martine VCJ, Yoshida M, Gottlieb OR (1981) ω-Ethyl, ω-ethenyl and ω-ethynyl-α-alkylidene-γ-lactones from Clinostemon mahuba. Phytochemistry 20:459–464

    Article  Google Scholar 

  6. Tanaka H, Nakamura T, Ichino K, Ito K, Tanaka T (1990) Butanolides from Litsea japonica. Phytochemistry 29:857–859

    Article  CAS  Google Scholar 

  7. Abrell LM, Borgeson B, Crews P (1996) Chloro polyketides from the cultured fungus (Aspergillus) separated from a marine sponge. Tetrahedron Lett 37:2331–2334

    Article  CAS  Google Scholar 

  8. Zhao Y, Guo Y-W, Zhang W (2005) Rotundifolides A and B, two ew enol-derived Butenolactones from the Bark of Litsea rotundifplia var. oblongifolia. Helv Chim Acta 88:349–353

    Article  CAS  Google Scholar 

  9. Cheng W, Zhu C, Xu W, Fan X, Tang Y, Li Y, Chen X, Wang W, Shi J (2009) Chemical constituents of the bark of Machilus wangchiana and their biological activities. J Nat Prod 72:2145–2152

    Article  CAS  PubMed  Google Scholar 

  10. El-Kashef DH, Daletos G, Plenker M, Hartmann R, Mandi A, Kurtan T, Weber H, Lin W, Ancheeva E, Proksch P (2019) Polyketides and a dihydroquinolones alkaloid from a arine-derived strain of the fungus Metarhizium marquandii. J Nat Prod 82:2460–2469

    Article  CAS  PubMed  Google Scholar 

  11. Ahn S, Basavana Gowda MK, Lee M, Masagalli JN, Mailar K, Choi WJ, Noh M (2020) Novel linked butanolide dimer compounds increase adiponectin production during adipogenesis in human mesenchymal stem cells through peroxisome proliferator-activated receptor γ modulation. Eur J Med Chem 187:111969. https://doi.org/10.1021/acs.jnatprod.9b00125

    Article  CAS  PubMed  Google Scholar 

  12. Lee J, Mailar K, Yoo O-K, Choi WJ, Keum Y-S (2018) Marliolide inhibits skin carcinogenesis by activating NRF2/ARE to induce heme oxygenase-1. Eur J Med Chem 150:113–126

    Article  CAS  PubMed  Google Scholar 

  13. Ngo Q-MT, Cao TQ, Tran P-L, Kim JA, Seo S-T, Kim J-C, Woo MH, Lee JH, Min BS (2018) Lactones from the pericarps of Litsea japonica and their anti-inflammatory activities. Bioorg Med Chem Lett 28:2109–2115

    Article  CAS  PubMed  Google Scholar 

  14. Yang C-P, Huang G-J, Huang H-C, Chen Y-C, Chan C-I, Wang S-Y, Chang H-S, Tseng Y-H, Chien S-C, Kuo Y-H (2013) The effect of the aerial part of Litsea akoensis on lipopolysaccharides (LPS)-induces nitric oxide production in RAW264.7 cells. Int J Mol Sci 14:9168–9181. https://doi.org/10.3390/ijms14059168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim NY, Ryu J-H (2003) Butanolides from Machilus thunbergii and their inhibitory activity on nitric oxide synthesis in activated macrophages. Phytother Res 17:372–375. https://doi.org/10.1002/ptr.1160

    Article  CAS  PubMed  Google Scholar 

  16. Tsai I-L, Hung C-H, Duh C-Y, Chen J-H, Lin W-Y, Chen I-S (2001) Cytotoxic butanolides from the stem bark of formosan Lindera communis. Planta Med 67:865–867

    Article  CAS  PubMed  Google Scholar 

  17. Chang S-Y, Cheng M-J, Kuo Y-H, Lee S-J, Chang H-S, Chen I-S (2008) Scondary metabolites from the stem bark of Litsea akoensis and their cytotoxic activity. Helv Chim Acta 91:1156–1165

    Article  CAS  Google Scholar 

  18. Ngo Q-MT, Cao TQ, Woo MH, Byung S (2019) Cytotoxic lactones from the pericarps of Litsea japonica. Nat Prod Sci 25:23–27

    Article  CAS  Google Scholar 

  19. Masi M, Lecce RD, Marsico G, Linaldeddu BT, Maddau L, Superchi S, Evidente A (2021) Pinofuranoxins A and B, bioactive trisubstituted furanones produced by the invasive pathogen Diplodia saponea. J Nat Prod 84:2600–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hehre WJ, Kuunzinger P, Deppmeier B, Driessen A, Uchida N, Hashimoto M, Fukushi E, Takata Y (2019) Efficient protocol for accurately calculating 13C chemical shifts of conformationally flexible natural products: scope, assessment, and limitations. J Nat Prod 82:2299–2306

    Article  CAS  PubMed  Google Scholar 

  21. Smith SG, Goodman JM (2010) Assigning stereochemistry to single diastereomers by GIAO NMR calculation: the DP4 probability. J Am Chem Soc 132:12946–12959. https://doi.org/10.1021/ja105035r

    Article  CAS  PubMed  Google Scholar 

  22. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  23. Klamt A (2018) The COSMO and COSMO-RS solvation models. Wiley Interdiscip Rev Comput Mol Sci 8:e1338. https://doi.org/10.1002/wcms.1338

    Article  CAS  Google Scholar 

  24. Harcken C, Bruckner R (2001) Stereopure 1,3-butadiene-2-carboxylates and their conversion into non-racemic α-alkylidenebutyrolactone natural products by asymmetric dihydroxylation. Tetrahedron Lett 42:3967–3971. https://doi.org/10.1016/50040-4039(01)00598-6

    Article  CAS  Google Scholar 

  25. Wakabayashi S, Ogawa H, Ueno N, Kunieda N, Mandai T, Nokami J (1987) Synthesis optically active litsenolide C. Chem Lett 16:875–878. https://doi.org/10.1246/cl.1987.875

    Article  Google Scholar 

  26. Chen M-J, Lo C-Y, Chin C-C, Liu R-S (2000) Total synthesis of (+)-blastmycinone, (-)-litsenolide C1, and related natural trisubstituted lactones via alkynyltungsten compounds. J Org Chem 65:6362–6367. https://doi.org/10.1021/jo0002487

    Article  CAS  PubMed  Google Scholar 

  27. Ramachandran PV, Rudd MT, Burghardt TE, Reddy MVR (2003) Vinylalumination for the synthesis of functionalized ally alcohols, vinylepoxides, and α-alkylidene-β-hydroxy-γ-lactones. J Org Chem 68:9310–9316. https://doi.org/10.1021/jo034954u

    Article  CAS  PubMed  Google Scholar 

  28. Davoust M, Cantagrel F, Metzner P, Briere J-F (2008) A stereodivergent synthesis of β-hydroxy-α-methylene lactones via vinyl epoxides. Org Biomol Chem 6:1981–1993

    Article  CAS  PubMed  Google Scholar 

  29. Kitson RRA, Millemaggi A, Taylor RJK (2009) The renaissance of α-methylene-γ-butyrolactones: new synthetic approaches. Angew Chem Int Ed 48:9426–9451. https://doi.org/10.1002/anie.200903108

    Article  CAS  Google Scholar 

  30. Lee SI, Jang JH, Hwang G-S, Ryu DH (2013) Asymmetric synthesis of α-alkylidene-β-hydroxy-γ-butyrolactones via enantioselective tandem Michael-aldol reaction. J Org Chem 78:770–775. https://doi.org/10.1021/jo302369q

    Article  CAS  PubMed  Google Scholar 

  31. Kutsumura N, Inagaki M, Kiriseko A, Saito T (2019) Total synthesis of 3-epi-jurunolide C. Chem Phram Bull 67:594–598

    Article  CAS  Google Scholar 

  32. Pons D, Sarignac M, Genet JP (1990) Efficient syntheses of enantiomerically pure L and D-allothreonines and (S) and (R) isoserines. Tetrahedron Lett 31:5023–5026. https://doi.org/10.1016/S0040-4039(00)97795-5

    Article  CAS  Google Scholar 

  33. Lee S, MacMillan DWC (2006) Enantioselective organocatalytic epoxidation using hypervalent iodine reagent. Tetrahedron 62:11413–11424. https://doi.org/10.1016/j.tet.2006.07.055

    Article  CAS  Google Scholar 

  34. Ohtani I, Kusumi T, Kashman Y, Kakisawa H (1991) High-field FT NMR application of Mosher’s method. The absolure configurations of marine terpenoids. J Am Chem Soc 113:4092–4096. https://doi.org/10.1021/ja00011a006

    Article  CAS  Google Scholar 

  35. Spartan’20 (2019) Spartan’20: Tutorial and user’s guide, Spartan’20 for Windows, Macintosh and Linux, Wavefunction-Inc., Irvine, CA

  36. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comp Chem 17:490–519

    Article  CAS  Google Scholar 

  37. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  38. Mardirossian N, Head-Gordon M (2014) ωB97X-V: a 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys Chem Chem Phys 16:9904–9924

    Article  CAS  PubMed  Google Scholar 

  39. https://www.turbomole.org/

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Satoru Tamura, Tomikazu Kawano, and Masayoshi Arai. Performed the experiments: Kazuki Ujiie, Chiaki Tanaka, and Yuki Yoshida. Analyzed DFT calculation with DP4 method and ECD calculation: Masaru Hashimoto.

Corresponding author

Correspondence to Satoru Tamura.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1222 KB)

Supplementary file2 (PDF 7425 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ujiie, K., Tanaka, C., Arai, M. et al. Proposal for structure revision of pinofuranoxin A through total syntheses of stereoisomers. J Nat Med (2024). https://doi.org/10.1007/s11418-024-01810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11418-024-01810-5

Keywords

Navigation