Skip to main content
Log in

Integrative informatics analysis identifies that ginsenoside Re improves renal fibrosis through regulation of autophagy

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

We previously demonstrated that ginsenoside Re (G-Re) has protective effects on acute kidney injury. However, the underlying mechanism is still unclear. In this study, we conducted a meta-analysis and pathway enrichment analysis of all published transcriptome data to identify differentially expressed genes (DEGs) and pathways of G-Re treatment. We then performed in vitro studies to measure the identified autophagy and fibrosis markers in HK2 cells. In vivo studies were conducted using ureteric obstruction (UUO) and aristolochic acid nephropathy (AAN) models to evaluate the effects of G-Re on autophagy and kidney fibrosis. Our informatics analysis identified autophagy-related pathways enriched for G-Re treatment. Treatment with G-Re in HK2 cells reduced autophagy and mRNA levels of profibrosis markers with TGF-β stimulation. In addition, induction of autophagy with PP242 neutralized the anti-fibrotic effects of G-Re. In murine models with UUO and AAN, treatment with G-Re significantly improved renal function and reduced the upregulation of autophagy and profibrotic markers. A combination of informatics analysis and biological experiments confirmed that ginsenoside Re could improve renal fibrosis and kidney function through the regulation of autophagy. These findings provide important insights into the mechanisms of G-Re’s protective effects in kidney injuries.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Publicly available datasets were used in this study. These can be found in GEO (https://www.ncbi.nlm.nih.gov/geo/) with accession numbers: GSE116121, GSE114040, GSE99505, GSE93356, GSE85871, GSE75570, GSE31959 and GSE17541.

Abbreviations

AAN:

Aristolochic acid nephropathy

ACR:

Albumin-to-creatinine ratio

AMPK:

AMP-activated protein kinase

BUN:

Blood urea nitrogen

CON:

Control

EMT:

Epithelial–mesenchymal transition

ERK:

Extracellular signal-regulated kinase

FBS:

Fetal bovine serum

G-Re:

Ginsenoside Re

H&E:

Hematoxylin and eosin staining

LC3:

Microtubule-associated protein 1A/1B-light chain 3

mTOR:

Mammalian target of rapamycin complex 1

PKB:

Protein kinase B

qPCR:

Quantitative polymerase chain reaction

TGF-β:

Transforming growth factor beta

UUO:

Unilateral ureter obstruction

VEGF:

Vascular endothelial growth factor

α-SMA:

α-Smooth muscle actin

References

  1. Lu JM, Yao Q, Chen C (2009) Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 7:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 29:1109–1118

    Article  CAS  PubMed  Google Scholar 

  3. Park EK, Choo MK, Kim EJ, Han MJ, Kim DH (2003) Antiallergic activity of ginsenoside Rh2. Biol Pharm Bull 26:1581–1584

    Article  CAS  PubMed  Google Scholar 

  4. Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, Kim MS, Kwon DY (2009) Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-gamma signal pathways. Phytother Res 23:262–266

    Article  CAS  PubMed  Google Scholar 

  5. Peng D, Wang H, Qu C, Xie L, Wicks SM, Xie J (2012) Ginsenoside re: Its chemistry, metabolism and pharmacokinetics. Chin Med 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen LM, Zhou XM, Cao YL, Hu WX (2008) Neuroprotection of ginsenoside Re in cerebral ischemia-reperfusion injury in rats. J Asian Nat Prod Res 10:439–445

    Article  CAS  PubMed  Google Scholar 

  7. Liu Z, Li Z, Liu X (2002) Effect of ginsenoside Re on cardiomyocyte apoptosis and expression of Bcl-2/Bax gene after ischemia and reperfusion in rats. J Huazhong Univ Sci Technol Med Sci 22:305–309

    Google Scholar 

  8. Cho JY, Kim AR, Yoo ES, Baik KU, Park MH (2002) Ginsenosides from panax ginseng differentially regulate lymphocyte proliferation. Planta Med 68:497–500

    Article  CAS  PubMed  Google Scholar 

  9. Wang Z, Li YF, Han XY, Sun YS, Zhang LX, Liu W, Liu XX, Li W, Liu YY (2018) Kidney protection effect of ginsenoside Re and its underlying mechanisms on cisplatin-induced kidney injury. Cell Physiol Biochem 48:2219–2229

    Article  CAS  PubMed  Google Scholar 

  10. Wang QW, Yu XF, Xu HL, Zhao XZ, Sui DY (2019) Ginsenoside Re improves isoproterenol-induced myocardial fibrosis and heart failure in rats. Evid Based Complement Altern Med 2019:3714508

    Google Scholar 

  11. Qomaladewi NP, Kim MY, Cho JY (2019) Autophagy and its regulation by ginseng components. J Ginseng Res 43:349–353

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang ZL, Liu ML, Huang YS, Liang WY, Zhang MM, Fan YD, Ma MF (2020) Ginsenoside Re enhances the survival of H9c2 cardiac muscle cells through regulation of autophagy. J Asian Nat Prod Res 22:774–787

    Article  PubMed  Google Scholar 

  13. Liu L, Ma F, Hao Y, Yi Z, Yu X, Xu B, Wei C, Hu J (2020) Integrative informatics analysis of transcriptome and identification of interacted genes in the glomeruli and tubules in CKD. Front Med (Lausanne) 7:615306

    Article  PubMed  Google Scholar 

  14. Ratnam KK, Feng X, Chuang PY, Verma V, Lu TC, Wang J, Jin Y, Farias EF, Napoli JL, Chen N, Kaufman L, Takano T, D’Agati VD, Klotman PE, He JC (2011) Role of the retinoic acid receptor-alpha in HIV-associated nephropathy. Kidney Int 79:624–634

    Article  CAS  PubMed  Google Scholar 

  15. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  16. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirschberg R (2005) Wound healing in the kidney: complex interactions in renal interstitial fibrogenesis. J Am Soc Nephrol 16:9–11

    Article  PubMed  Google Scholar 

  18. Li X, Mo N, Li Z (2020) Ginsenosides: potential therapeutic source for fibrosis-associated human diseases. J Ginseng Res 44:386–398

    Article  PubMed  Google Scholar 

  19. Xie XS, Yang M, Liu HC, Zuo C, Li Z, Deng Y, Fan JM (2008) Influence of ginsenoside Rg1, a panaxatriol saponin from panax notoginseng, on renal fibrosis in rats with unilateral ureteral obstruction. J Zhejiang Univ Sci B 9:885–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie XS, Liu HC, Wang FP, Zhang CL, Zuo C, Deng Y, Fan JM (2010) Ginsenoside Rg1 modulation on thrombospondin-1 and vascular endothelial growth factor expression in early renal fibrogenesis in unilateral obstruction. Phytother Res 24:1581–1587

    Article  CAS  PubMed  Google Scholar 

  21. Lim SW, Jin L, Luo K, Jin J, Yang CW (2017) Ginseng extract reduces tacrolimus-induced oxidative stress by modulating autophagy in pancreatic beta cells. Lab Invest 97:1271–1281

    Article  CAS  PubMed  Google Scholar 

  22. Kang S, Kim JE, Song NR, Jung SK, Lee MH, Park JS, Yeom MH, Bode AM, Dong Z, Lee KW (2014) The ginsenoside 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol induces autophagy and apoptosis in human melanoma via AMPK/JNK phosphorylation. PLoS ONE 9:e104305

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu X, Chen J, Sun N, Li N, Zhang Z, Zheng T, Li Z (2020) Ginsenoside Rb1 ameliorates autophagy via the AMPK/mTOR pathway in renal tubular epithelial cells in vitro and in vivo. Int J Biol Macromol 163:996–1009

    Article  CAS  PubMed  Google Scholar 

  24. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ravanan P, Srikumar IF, Talwar P (2017) Autophagy: the spotlight for cellular stress responses. Life Sci 188:53–67

    Article  CAS  PubMed  Google Scholar 

  26. Tang C, Livingston MJ, Liu Z, Dong Z (2020) Autophagy in kidney homeostasis and disease. Nat Rev Nephrol 16:489–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li L, Zepeda-Orozco D, Black R, Lin F (2010) Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 176:1767–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM, Dong Z (2016) Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy 12:976–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim WY, Nam SA, Song HC, Ko JS, Park SH, Kim HL, Choi EJ, Kim YS, Kim J, Kim YK (2012) The role of autophagy in unilateral ureteral obstruction rat model. Nephrology (Carlton) 17:148–159

    Article  CAS  PubMed  Google Scholar 

  30. Hafez MM, Hamed SS, El Khadragy MF, Hassan ZK, Al Rejaie SS, Sayed Ahmed MM, Al-Harbi NO, Al Hosaini KA, Al Harbi MM, Alhoshani AR, Al Shabanah OA, Alsharari SD (2017) Effect of ginseng extract on the TGF beta1 signaling pathway in CCl4 induced liver fibrosis in rats. BMC Complement Altern Med 17:1–11

    Article  Google Scholar 

  31. Kim DH, Chung JH, Yoon JS, Ha YM, Bae S, Lee EK, Jung KJ, Kim MS, Kim YJ, Kim MK, Chung HY (2013) Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-kappaB in LPS-stimulated RAW264.7 cells and mouse liver. J Ginseng Res 37:54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu M, Bai X, Yu S, Zhao W, Qiao J, Liu Y, Zhao D, Wang J, Wang S (2019) Ginsenoside Re inhibits ROS/ASK 1 dependent mitochondrial apoptosis pathway and activation of Nrf2 antioxidant response in beta amyloid challenged SH SY5Y cells. Molecules. https://doi.org/10.3390/molecules24152687

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by grants (YDZJ202201ZYTS107, YDZJ202201ZYTS020) from Jilin Natural Science Foundation of the Jilin Science and Technology Department of China (Y. Liu).

Author information

Authors and Affiliations

Authors

Contributions

X. Yu and C. Wei conceived and designed the experiments. Y. Liu, L. Mou and Q. Lin performed the experiments. Z. Yi, Y. Liu, L. Mou and K. Banu performed the data analysis. X. Yu and C. Wei drafted and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Chengguo Wei or Xiaoxia Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

Not applicable.

Institutional review board

The animal study protocol was approved by the Institutional Animal Care and Use Committee at the Icahn School of Medicine at Mount Sinai (protocol code: IACUC-2014–0175).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 160 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Mou, L., Yi, Z. et al. Integrative informatics analysis identifies that ginsenoside Re improves renal fibrosis through regulation of autophagy. J Nat Med (2024). https://doi.org/10.1007/s11418-024-01800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11418-024-01800-7

Keywords

Navigation