Skip to main content
Log in

Alliaxylines A–E: five new mexicanolides from the stem barks of Dysoxylum alliaceum (Blume) Blume ex A.Juss

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

A total of five new mexicanolides (15), namely alliaxylines A–E, together with two known limonoids 6 and 7, were isolated and identified from Dysoxylum alliaceum (Blume) Blume ex. A.Juss. (Meliaceae). The structures of these compounds were elucidated based on extensive spectroscopic analyses, including HR-ESI–MS, UV, IR, 1D, and 2D NMR, as well as theoretical stimulation of NMR shifts with the DP4 + algorithm. Consequently, this study aimed to examine cytotoxic activities of these compounds against MCF-7 and A549 cell lines. The results implied that compound 2 was the most potent against the two tested cells, with IC50 values of 34.95 ± 0.21 and 44.39 ± 1.03 µM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Luo J, Sun Y, Li Q, Kong L (2022) Research progress of meliaceous limonoids from 2011 to 2021. Nat Prod Rep 39:1325–1365. https://doi.org/10.1039/D2NP00015F

    Article  CAS  PubMed  Google Scholar 

  2. Riyadi SA, Naini AA, Supratman U (2023) Sesquiterpenoids from meliaceae family and their biological activities. Molecules 28:4874. https://doi.org/10.3390/molecules28124874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nugroho AE, Wong CP, Hirasawa Y, Kaneda T, Tougan T, Horii T, Morita H (2023) Antimalarial ceramicines Q-T from Chisocheton ceramicus. J Nat Med 77:596–603. https://doi.org/10.1007/s11418-023-01706-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tringali C (2000) Bioactive compounds from natural sources: isolation characterization and biological properties. Taylor & Francis, Abingdon

    Book  Google Scholar 

  5. Naini AA, Mayanti T, Maharani R, Fajriah S, Kabayama K, Shimoyama A, Manabe Y, Supratman U (2023) Dysoticans F-H: three unprecedented dimeric cadinanes from Dysoxylum parasiticum (Osbeck) Kosterm. stem bark. RSC Adv 13:9370–9376. https://doi.org/10.1039/D3RA01085F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Naini AA, Mayanti T, Harneti D, Maharani R, Farabi K, Herlina T, Supratman U, Chakthong S (2023) Sesquiterpenoids and sesquiterpenoid dimers from the stem bark of Dysoxylum parasiticum (osbeck) kosterm. Phytochemistry 205:113477. https://doi.org/10.1016/j.phytochem.2022.113477

    Article  CAS  PubMed  Google Scholar 

  7. Nagakura Y, Yamanaka R, Hirasawa Y, Hosoya T, Rahman A, Kusumawati I, Morita H (2010) Gaudichaudysolin A, a new limonoid from the bark of Dysoxylum gaudichaudianum. Heterocycles 80:1471–1477. https://doi.org/10.3987/COM-09-S(S)106

    Article  CAS  Google Scholar 

  8. Chen JL, Kernan MR, Jolad SD, Stoddart CA, Bogan M, Cooper R (2007) Dysoxylins A−D, Tetranortriterpenoids with Potent Anti-RSV Activity from Dysoxylum gaudichaudianum. J Nat Prod 70:312–315. https://doi.org/10.1021/np060398y

    Article  CAS  PubMed  Google Scholar 

  9. Luo XD, Wu SH, Wu DG, Ma YB, Qi SH (2002) Novel antifeeding limonoids from Dysoxylum hainanense. Tetrahedron 58:7797–7804. https://doi.org/10.1016/S0040-4020(02)00944-4

    Article  CAS  Google Scholar 

  10. Han ML, Zhao JX, Liu HC, Ni G, Ding J, Yang SP, Yue JM (2015) Limonoids and Triterpenoids from Dysoxylum mollissimum var. glaberrimum. J Nat Prod 78:754–761. https://doi.org/10.1021/np500967k

    Article  CAS  PubMed  Google Scholar 

  11. Lakshmi V, Pandey K, Agarwal SK (2009) Bioactivity of the compounds in genus Dysoxylum. Acta Ecol Sin 29:30–44. https://doi.org/10.1016/j.chnaes.2009.04.005

    Article  Google Scholar 

  12. Suwardi AB, Navia ZI, Harmawan T, Seprianto S, Syamsuardi S, Mukhtar E (2022) Diversity of wild edible fruit plant species and their threatened status in the Aceh Province, Indonesia. Biodiversitas 23:1310–1318. https://doi.org/10.13057/biodiv/d230315

    Article  Google Scholar 

  13. Nishizawa M, Inoue A, Sastrapradja S, Hayashi Y (1983) (+)-8-Hydroxycalamenene: a fish-poison principle of Dysoxylum acutangulum and D. Alliaceum Phytochem 22:2083–2085. https://doi.org/10.1016/0031-9422(83)80052-1

    Article  CAS  Google Scholar 

  14. Nishizawa M, Yamada H, Sastrapradja S, Hayashi Y (1985) Structure and synthesis of bicalamenene. Tetrahedron Lett 26:1535–1536. https://doi.org/10.1016/S0040-4039(00)98545-9

    Article  CAS  Google Scholar 

  15. Lin BD, Yuan T, Zhang CR, Dong L, Zhang B, Wu Y, Yue JM (2009) Structurally diverse limonoids from the fruits of Swietenia mahagoni. J Nat Prod 72:2084–2090. https://doi.org/10.1021/np900522h

    Article  CAS  PubMed  Google Scholar 

  16. Zhang JC, Liao Q, Shen L, Wu J (2020) Twenty-five limonoids from the Hainan mangrove Xylocarpus granatum. Bioorganic Chem 100:103903. https://doi.org/10.1016/j.bioorg.2020.103903

    Article  CAS  Google Scholar 

  17. Pudhom K, Sommit D, Nuclear P, Ngamrojanavanich N, Petsom A (2010) Moluccensins H− J, 30-Ketophragmalin Limonoids from Xylocarpus moluccensis. J Nat Prod 73:263–266. https://doi.org/10.1021/np900583h

    Article  CAS  PubMed  Google Scholar 

  18. Hofer M, Greger H, Mereiter K (2009) 6α-Acetoxygedunin. Acta Crystallographica Sect E: Struct Rep Online 65:1942–1943

    Article  Google Scholar 

  19. Kipassa NT, Iwagawa T, Okamura H, Doe M, Morimoto Y, Nakatani M (2008) Limonoids from the stem bark of Cedrela odorata. Phytochemistry 69:1782–1787. https://doi.org/10.1016/j.phytochem.2007.12.015

    Article  CAS  PubMed  Google Scholar 

  20. Deng Z, Liu S, Cui S, Zhou L, Yao Q (2012) Cytotoxic activity of five limonoids from Meliae cortex and their structure-activity relationship. Chin J Nat Med 10:238–240. https://doi.org/10.3724/SP.J.1009.2012.00238

    Article  CAS  Google Scholar 

  21. Grimblat N, Zanardi MM, Sarotti AM (2015) Beyond DP4+ An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem 80:12526–12534. https://doi.org/10.1021/acs.joc.5b02396

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the facilities of Universitas Padjadjaran, Centre for Higher Education Funding (BPPT) Ministry of Education, Culture, Research and Technology, also the Indonesia Endowment Fund for Education (LPDP).

Funding

This work was partly supported by Academic Leadership Grant No 1959/UN6.3.1/PT.00/2023 awarded to Unang Supratman, by Centre for Higher Education Funding (BPPT) Ministry of Education, Culture, Research and Technology, and also by the Indonesia Endowment Fund for Education (LPDP).

Author information

Authors and Affiliations

Authors

Contributions

US, TM, RL, and SJ assisted in conducting the experiments, performed the spectral analysis, and wrote the manuscript. SAR, AAN, SF, and MNA designed and conducted all experiments, as well as wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Unang Supratman.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7070 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riyadi, S.A., Naini, A.A., Mayanti, T. et al. Alliaxylines A–E: five new mexicanolides from the stem barks of Dysoxylum alliaceum (Blume) Blume ex A.Juss. J Nat Med (2024). https://doi.org/10.1007/s11418-024-01794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11418-024-01794-2

Keywords

Navigation