Skip to main content
Log in

Hypoglycemic effects of mountain caviar extract and inhibitory mechanism of saponins, including momordin Ic, on glucose absorption

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Mountain caviar is a fruit of Kochia scoparia that contains momordin Ic as a major saponin constituent. Its extract (MCE) has been shown to suppress blood glucose elevations in the human oral glucose tolerance test (OGTT) as well as increases in blood glucose in OGTT, gastric emptying (GE), and glucose incorporation in the small intestine in rats. However, the effects of MCE and momordin Ic on glucose absorption in mice and these action mechanisms have not been examined for more than 2 decades. Therefore, we herein investigated the effects of MCE, its saponin fraction, and momordin Ic on blood glucose elevations in mice. Mouse blood glucose elevation tests were performed on carbohydrate-loaded mice. The mountain caviar saponin fraction significantly delayed blood glucose elevations in glucose-, sucrose-, and soluble starch-loaded mice. In glucose-loaded mice, the saponin fraction, MCE, and momordin Ic significantly suppressed rapid glucose elevations after glucose loading, but not sucrose loading. A mouse GE study was performed by loading with glucose and phenolphthalein solution. Momordin Ic and MCE strongly suppressed mouse GE. Intestinal glucose absorption was evaluated by the incorporation of 2-deoxyglucose (2-DG) into Caco-2 cell layers and mouse duodenum wall vesicles. The results obtained showed that momordin Ic inhibited the incorporation of 2-DG into Caco-2 cells and mouse duodenum vesicles. Collectively, these results suggest that MCE, particularly the principal saponin, momordin Ic, preferably suppressed glucose-induced blood glucose elevations and delayed carbohydrate-induced glucose elevations in mice. The underlying mechanism was found to involve the suppression of GE and intestinal glucose absorption.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A (2020) The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol 18:104–109

    Article  CAS  PubMed  Google Scholar 

  2. Clement S (2019) Medical management of the diabetic patient. Clin Podiatr Med Surg 36:349–354

    Article  PubMed  Google Scholar 

  3. Ogurtsova K, Guariguata L, Barengo NC, Ruiz PL, Sacre JW, Karuranga S, Sun H, Boyko EJ, Magliano DJ (2022) IDF diabetes atlas: global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract 183:109118

    Article  PubMed  Google Scholar 

  4. Kohsaka S, Morita N, Okami S, Kidani Y, Yajima T (2021) Current trends in diabetes mellitus database research in Japan. Diabetes Obes Metab 23(Suppl. 2):3–18

    Article  PubMed  Google Scholar 

  5. Morikawa T, Ninomiya K, Tanabe G, Matsuda H, Yoshikawa M, Muraoka O (2021) A review of antidiabetic active thiosugar sulfoniums, salacinol and neokotalanol, from plants of the genus Salacia. J Nat Med 75:449–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kimura T, Nakagawa K, Kubota H, Kojima Y, Goto Y, Yamagishi K, Oita S, Oikawa S, Miyazawa T (2007) Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. J Agric Food Chem 55:5869–5874

    Article  CAS  PubMed  Google Scholar 

  7. Miura T, Takagi S, Ishida T (2012) Management of diabetes and its complications with banaba (Lagerstroemia speciosa L.) and corosolic acid. Evid Based Complement Alternat Med 2012:871495

    Article  PubMed  PubMed Central  Google Scholar 

  8. Devangan S, Varghese B, Johny E, Gurram S, Adela R (2021) The effect of Gymnema sylvestre supplementation on glycemic control in type 2 diabetes patients: a systematic review and meta-analysis. Phytother Res 35:6802–6812

    Article  CAS  PubMed  Google Scholar 

  9. Fiona SA, Kaye FP, Jennie CBM (2008) International tables of glycemic index and glycemic load values. Diabetes Care 31:2281–2283

    Article  Google Scholar 

  10. Ceriello A, Esposito K, Piconi L, Ihnat M, Thorpe J, Testa R, Bonfigli AR, Giugliano D (2008) Glucose “peak” and glucose “spike”: Impact on endothelial function and oxidative stress. Diabetes Res Clin Pract 82:262–267

    Article  CAS  PubMed  Google Scholar 

  11. Han HY, Lee HE, Kim HJ, Jeong SH, Kim JH, Kim H, Ryu MH (2016) Kochia scoparia induces apoptosis of oral cancer cells in vitro and in heterotopic tumors. J Ethnopharmacol 192:431–441

    Article  PubMed  Google Scholar 

  12. Zou W, Tang Z, Long Y, Xiao Z, Ouyang B, Liu M (2021) Kochiae fructus, a fruit of common potherb Kochia scoparia (L.) schrad: a review on phytochemistry, pharmacology, toxicology, quality control, and pharmacokinetics. Evid Based Complement Alternat Med 2021:5382684

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yoshikawa M, Shimada H, Morikawa T, Yoshizumi S, Matsumura N, Murakami T, Matsuda H, Hori K, Yamahara J (1997) Medicinal foodstuffs. VII. On the saponin constituents with glucose and alcohol absorption-inhibitory activity from a food garnish “Tonburi”, the fruit of Japanese Kochia scoparia (L.) SCHRAD.: structures of scoparianosides A, B, and C. Chem Pharm Bull 45:1300–1305

    Article  CAS  Google Scholar 

  14. Matsuda H, Li Y, Yamahara J, Yoshikawa M (1999) Inhibition of gastric emptying by triterpene saponin, momordin Ic, in mice: roles of blood glucose, capsaicin-sensitive sensory nerves, and central nervous system. J Pharmacol Exp Ther 289:729–734

    CAS  PubMed  Google Scholar 

  15. Matsuda H, Li Y, Murakami T, Matsumura N, Yamahara J, Yoshikawa M (1998) Antidiabetic principles of natural medicines. III. structure-related inhibitory activity and action mode of oleanolic acid glycosides on hypoglycemic activity. Chem Pharm Bull (Tokyo) 46:1399–1403

    Article  CAS  PubMed  Google Scholar 

  16. Matsuda H, Morikawa T, Nakamura S, Muraoka O, Yoshikawa M (2023) New biofunctional effects of oleanane-type triterpene saponins. J Nat Med 77:644–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takara T, Suzuki N, Yamamoto K, Iio S, Kakinuma T, Baba A, Noguchi H, Yamada W, Hirano M, Yoneda A, Nagata M, Shimoda H (2023) Hypoglycemic effects of VegCaviar™ standardized with momordin Ic on the oral glucose tolerance test in healthy Japanese subjects. Jpn Pharmacol Ther 51:1763–1770

    Google Scholar 

  18. Zou W, Tang Z, Long Y, Xiao Z, Ouyang B, Liu M (2021) Kochiae fructus, the fruit of common potherb Kochia scoparia (L.) schrad: a review on phytochemistry, pharmacology, toxicology, quality control, and pharmacokinetics. Evid Based Complement Alternat Med 20:5382684

    Google Scholar 

  19. Ganjayi MS, Karunakaran RS, Gandham S, Meriga B (2023) Quercetin-3-O-rutinoside from Moringa oleifera downregulates adipogenesis and lipid accumulation and improves glucose uptake by activation of AMPK/Glut-4 in 3T3-L1 cells. Rev Bras Farmacogn 33:334–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anhê GF, Okamoto MM, Kinote A, Sollon C, Lellis-Santos C, Anhê FF, Lima GA, Hirabara SM, Velloso LA, Bordin S, Machado UF (2012) Quercetin decreases inflammatory response and increases insulin action in skeletal muscle of ob/ob mice and in L6 myotubes. Eur J Pharmacol 689:285–293

    Article  PubMed  Google Scholar 

  21. Eid HM, Nachar A, Thong F, Sweeney G, Haddad PS (2015) The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn Mag 11:74–81

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wei L, Singh R, Ha SE, Martin AM, Jones LA, Jin B, Jorgensen BG, Zogg H, Chervo T, Gottfried-Blackmore A, Nguyen L, Habtezion A, Spencer NJ, Keating DJ, Sanders KM, Ro S (2021) Serotonin deficiency is associated with delayed gastric emptying. Gastroenterology 160:2451–2466

    Article  CAS  PubMed  Google Scholar 

  23. Jones LA, Sun EW, Martin AM, Keating DJ (2020) The ever-changing roles of serotonin. Int J Biochem Cell Biol 125:105776

    Article  CAS  PubMed  Google Scholar 

  24. Drucker DJ (2018) Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab 27:740–756

    Article  CAS  PubMed  Google Scholar 

  25. Liu C, Hu MY, Zhang M, Li F, Li J, Zhang J, Li Y, Guo HF, Xu P, Liu L, Liu XD (2014) Association of GLP-1 secretion with anti-hyperlipidemic effect of ginsenosides in high-fat diet fed rats. Metabolism 63:1342–1351

    Article  CAS  PubMed  Google Scholar 

  26. Wang LY, Cheng KC, Li Y, Niu CS, Cheng JT, Niu HS (2017) Glycyrrhizic acid increases glucagon like peptide-1 secretion via TGR5 activation in type 1-like diabetic rats. Biomed Pharmacother 95:599–604

    Article  CAS  PubMed  Google Scholar 

  27. Srinuanchai W, Nooin R, Pitchakarn P, Karinchai J, Suttisansanee U, Chansriniyom C, Jarussophon S, Temviriyanukul P, Nuchuchua O (2021) Inhibitory effects of Gymnema inodorum (Lour.) decne leaf extracts and its triterpene saponin on carbohydrate digestion and intestinal glucose absorption. J Ethnopharmacol 266:113398

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu K, Ozeki M, Iino A, Nakajyo S, Urakawa N, Atsuchi M (2001) Structure-activity relationships of triterpenoid derivatives extracted from Gymnema inodorum leaves on glucose absorption. Jpn J Pharmacol 86:223–229

    Article  CAS  PubMed  Google Scholar 

  29. Wang CW, Huang YC, Chan FN, Su SC, Kuo YH, Huang SF, Hung MW, Lin HC, Chang WL, Chang TC (2015) A gut microbial metabolite of ginsenosides, compound K, induces intestinal glucose absorption and Na+/glucose cotransporter 1 gene expression through activation of cAMP response element binding protein. Mol Nutr Food Res 59:670–684

    Article  CAS  PubMed  Google Scholar 

  30. Sala-Rabanal M, Ghezzi C, Hirayama BA, Kepe V, Liu J, Barrio JR, Wright EM (2018) Intestinal absorption of glucose in mice as determined by positron emission tomography. J Physiol 596:2473–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kawamura N, Watanabe H, Oshio H (1988) Saponins from roots of momordica cochinchinensis. Phytochem 27:3585–3591

    Article  CAS  Google Scholar 

  32. Gafner F, Msonthi JD, Hostettmann K (1985) Molluscicidal saponins from Talinum tenuissimum DINTER. Helvetic Chim Acta 68:555–558

    Article  CAS  Google Scholar 

  33. Wang H, Fan CL, Wang B, Dai Y, Ye WC, Zhao SX (2003) Triterpene and saponins from Kochia scoparia. Chin J Nat Med 1:134–136

    CAS  Google Scholar 

  34. Pedro PF, Tsakmaki A, Bewick GA (2020) The glucose tolerance test in mice. Methods Mol Biol 2128:207–216

    Article  CAS  PubMed  Google Scholar 

  35. Matsuda H, Li Y, Yoshikawa M (2000) Possible involvement of dopamine and dopamine2 receptors in the inhibitions of gastric emptying by escin Ib in mice. Life Sci 67:2921–2927

    Article  CAS  PubMed  Google Scholar 

  36. Weng L, Chen TH, Zeng Q, Weng WH, Huang L, Lai D, Fu YS, Weng CF (2021) Syringaldehyde promoting intestinal motility with suppressing α-amylase hinder starch digestion in diabetic mice. Biomed Pharmacother 141:111865

    Article  CAS  PubMed  Google Scholar 

  37. Nakao A, Hu A, Yamaguchi T, Tabuchi M, Ikarashi Y, Kobayashi H (2022) Inchinkoto, the traditional Japanese kampo medicine, enhances intestinal epithelial barrier function in vitro. Evid Based Complement Alternat Med. https://doi.org/10.1155/2022/4139812

    Article  PubMed  PubMed Central  Google Scholar 

  38. Manzano S, Williamson G (2010) Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Mol Nutr Food Res 54:1773–1780

    Article  CAS  PubMed  Google Scholar 

  39. Boudry G, Cheeseman IC, Perdue HM (2007) Psychological stress impairs Na+-dependent glucose absorption and increases GLUT2 expression in the rat jejunal brush-border membrane. J Physiol Regul Integr Comp Physiol 292:R862-867

    Article  CAS  Google Scholar 

  40. Leem KH, Kim MG, Hahm YT, Kin HK (2016) Hypoglycemic effect of Opuntia ficus-indica var saboten is due to enhanced peripheral glucose uptake through activation of AMPK/p38 MAPK pathway. Nutrients 8:800

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was funded by a research and development grant from Aichi prefecture, Japan in 2022 (5 Sankagi 84-12) and Oryza Oil & Fat Chemical Ltd. R.H., Y.M., and M.T. have no personal financial interests from Oryza Oil & Fat Chemical. Co. Ltd.

Author information

Authors and Affiliations

Authors

Contributions

M.K., J.W., R.T., and H. S. performed mouse experiments. M.K. performed cell-based experiments. S. S.T. and H.S. purified the compounds and Y.M. and T.M. identified the chemical structures. H. S. wrote main manuscript, coordinated the study, and obtained the research fund. Y. M and T. M supervised the study.

Corresponding author

Correspondence to Hiroshi Shimoda.

Ethics declarations

Conflict of interest

M.K., S.T., and H.S. are current employees of Oryza Oil & Fat Chemical Co., Ltd. J.W. is an ex-employee of Oryza Oil & Fat Chemical Co., Ltd. R.H. and Y.M. declare no conflicts of interest. T.M. is an editorial board member of this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyasaka, K., Takada, R., Wu, J. et al. Hypoglycemic effects of mountain caviar extract and inhibitory mechanism of saponins, including momordin Ic, on glucose absorption. J Nat Med (2024). https://doi.org/10.1007/s11418-024-01791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11418-024-01791-5

Keywords

Navigation