Skip to main content
Log in

Bajitianwan formula extract ameliorates bone loss induced by iron overload via activating RAGE/PI3K/AKT pathway based on network pharmacology and transcriptomic analysis

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Osteoporosis (OP) is closely related to iron overload. Bajitianwan (BJTW) is a traditional Chinese medicine formulation used for treating senile diseases such as dementia and osteoporosis. Modern pharmacological researches have found that BJTW has beneficial effect on bone loss and memory impairment in aging rats. This paper aimed to explore the role and mechanism of BJTW in ameliorating iron overload-induced bone loss. Furthermore, BJTW effectively improved the bone micro-structure of the femur in mice, and altered bone metabolism biomarkers alkaline phosphatase (ALP) and osteocalcin (OCN) in serum, as well as oxidative indexes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) glutathione (GSH) and malondialdehyde (MDA) in liver. As for network pharmacology, 73 components collected from BJTW regulated 99 common targets merged in the BJTW and OP. The results of RNA-seq indicated that there were 418 potential targets in BJTW low dose group (BJTW-L) and 347 potential targets in BJTW high dose group (BJTW-H). Intriguingly, both PI3K-AKT signaling pathway and the AGEs-RAGE signaling pathway were contained in the KEGG pathways enrichment results of network pharmacology and transcriptomics, which were considered as the potential mechanism. Additionally, we verified that BJTW regulated the expression of related proteins in RAGE/PI3K-AKT pathways in MC3T3-E1 cells. In summary, BJTW has potent effect on protecting against iron overload-induced OP, and its mechanism may be related to the activation of the RAGE/PI3K-AKT signaling pathways.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miller PD (2016) Management of severe osteoporosis. Expert Opin Pharmacother 17(4):473–488. https://doi.org/10.1517/14656566.2016.1124856

    Article  CAS  PubMed  Google Scholar 

  2. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci 41(3):274–286. https://doi.org/10.1016/j.tibs.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  3. Che J, Yang J, Zhao B, Zhang G, Wang L, Peng S et al (2020) The effect of abnormal iron metabolism on osteoporosis. Biol Trace Elem Res 195(2):353–365. https://doi.org/10.1007/s12011-019-01867-4

    Article  CAS  PubMed  Google Scholar 

  4. França M, Martí-Bonmatí L, Porto G, Silva S, Guimarães S, Alberich-Bayarri Á et al (2018) Tissue iron quantification in chronic liver diseases using MRI shows a relationship between iron accumulation in liver, spleen, and bone marrow. Clin Radiol 73(2):211–215. https://doi.org/10.1016/j.crad.2017.07.022

    Article  Google Scholar 

  5. Zeidan RS, Han SM, Leeuwenburgh C, Xiao R (2021) Iron homeostasis and organismal aging. Ageing Res Rev 72:101510. https://doi.org/10.1016/j.arr.2021.101510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang W, Jing X, Du T, Ren J, Liu X, Chen F et al (2022) Iron overload promotes intervertebral disc degeneration via inducing oxidative stress and ferroptosis in endplate chondrocytes. Free Radic Biol Med 190:234–246. https://doi.org/10.1016/j.freeradbiomed.2022.08.018

    Article  CAS  PubMed  Google Scholar 

  7. Mukwaya E, Xu F, Wong MS, Zhang Y (2014) Chinese herbal medicine for bone health. Pharm Biol 52(9):1223–1228. https://doi.org/10.3109/13880209.2014.884606

    Article  PubMed  Google Scholar 

  8. Peng H (1994) Dictionary of traditional chinese medicine prescriptions. Second ed. People's Medical Publishing House Co., Ltd., China, pp 1994.

  9. Xia T, Dong X, Lin L, Jiang Y, Ma X, Xin H et al (2019) Metabolomics profiling provides valuable insights into the underlying mechanisms of Morinda officinalis on protecting glucocorticoid-induced osteoporosis. J Pharm Biomed Anal 166:336–346. https://doi.org/10.1016/j.jpba.2019.01.019

    Article  CAS  PubMed  Google Scholar 

  10. Arring NM, Millstine D, Marks LA, Nail LM (2018) Ginseng as a treatment for fatigue: a systematic review. J Altern Complement Med 24(7):624–633. https://doi.org/10.1089/acm.2017.0361

    Article  PubMed  Google Scholar 

  11. Lee B, Hong S, Kim M, Kim EY, Park HJ, Jung HS, et al (2021) Lycii radicis cortex inhibits glucocorticoid‑induced bone loss by downregulating Runx2 and BMP‑2 expression. Int J Mol Med 48(2). https://doi.org/10.3892/ijmm.2021.4988.

  12. Zhang H, Han T, Zhang L, Yu CH, Wan DG, Rahman K et al (2008) Effects of tenuifolin extracted from radix polygalae on learning and memory: a behavioral and biochemical study on aged and amnesic mice. Phytomedicine 15(8):587–594. https://doi.org/10.1016/j.phymed.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  13. Wen J, Yang Y, Hao J (2023) Acori Tatarinowii Rhizoma: A comprehensive review of its chemical composition, pharmacology, pharmacokinetics and toxicity. Front Pharmacol 14:1090526. https://doi.org/10.3389/fphar.2023.1090526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu T, Zhang H, Wang S, Xiang Z, Kong H, Xue Q et al (2022) A review on the advances in the extraction methods and structure elucidation of Poria cocos polysaccharide and its pharmacological activities and drug carrier applications. Int J Biol Macromol 217:536–551. https://doi.org/10.1016/j.ijbiomac.2022.07.070

    Article  CAS  PubMed  Google Scholar 

  15. Lin H, He J (2019) Effects of Bajitianwan on the expression of RANK, NFAT2 and V-ATP mRNA in the bone of ovariectomized rats. World J Integrated Traditional Western Med 6(14): 802–804. https://doi.org/10.13935/j.cnki.sjzx.190615.

  16. Lin H, He J (2019) Clinical observation on the treatment of spleen kidney yang deficiency of senile osteoporosis with Bajitianwan. Guangming Traditional Chin Med 1(34):45–47. https://doi.org/10.3969/j.issn.1003-8914.2019.01.019

    Article  Google Scholar 

  17. Xu W, Liu X, He X, Jiang Y, Zhang J, Zhang Q et al (2020) Bajitianwan attenuates D-galactose-induced memory impairment and bone loss through suppression of oxidative stress in aging rat model. J Ethnopharmacol 261:112992. https://doi.org/10.1016/j.jep.2020.112992

    Article  CAS  PubMed  Google Scholar 

  18. Chen B, Li GF, Shen Y, Huang XI, Xu YJ (2015) Reducing iron accumulation: a potential approach for the prevention and treatment of postmenopausal osteoporosis. Exp Ther Med 10(1):7–11. https://doi.org/10.3892/etm.2015.2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu LL, Liu GW, Liu H, Zhao K, Xu YJ (2021) Iron accumulation deteriorated bone loss in estrogen-deficient rats. J Orthop Surg Res 16(1):525. https://doi.org/10.1186/s13018-021-02663-4

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li S, Zhang B (2013) Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 11(2):110–120. https://doi.org/10.1016/S1875-5364(13)60037-0

    Article  PubMed  Google Scholar 

  21. Cai FF, Zhou WJ, Wu R, Su SB (2018) Systems biology approaches in the study of Chinese herbal formulae. Chin Med 13:65. https://doi.org/10.1186/s13020-018-0221-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. XU S, Xia T, Zhang J, Jiang Y, Wang N, Xin H, et al (2022) Protective effects of bitter acids from Humulus lupulus L. against senile osteoporosis via activating Nrf2/HO-1/NQO1 pathway in D-galactose induced aging mice. J Funct Foods 94: 105099. https://doi.org/10.1016/j.jff.2022.105099.

  23. Zhang W, Huai Y, Miao Z, Qian A, Wang Y (2019) Systems pharmacology for investigation of the mechanisms of action of traditional chinese medicine in drug discovery. Front Pharmacol 10:743. https://doi.org/10.3389/fphar.2019.00743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fan YS, Li Q, Hamdan N, Bian YF, Zhuang S, Fan K, et al (2018) Tetrahydroxystilbene glucoside regulates proliferation, differentiation, and OPG/RANKL/M-CSF expression in MC3T3-E1 Cells via the PI3K/Akt pathway. Molecules 23(9). https://doi.org/10.3390/molecules23092306.

  25. Gao Z, Chen Z, Xiong Z, Liu X (2022) Ferroptosis—a new target of osteoporosis. Exp Gerontol 165:111836. https://doi.org/10.1016/j.exger.2022.111836

    Article  CAS  PubMed  Google Scholar 

  26. Antoniucci DM, Sellmeyer DE, Bilezikian JP, Palermo L, Ensrud KE, Greenspan SL (2007) Elevations in serum and urinary calcium with parathyroid hormone (1–84) with and without alendronate for osteoporosis. J Clin Endocrinol Metab 92(3):942–947. https://doi.org/10.1210/jc.2006-1788

    Article  CAS  PubMed  Google Scholar 

  27. Sun X, Xia T, Zhang S, Zhang J, Xu L, Han T (2022) Hops extract and xanthohumol ameliorate bone loss induced by iron overload via activating Akt/GSK3beta/Nrf2 pathway. J Bone Miner Metab 40(3):375–388. https://doi.org/10.1007/s00774-021-01295-2

    Article  CAS  PubMed  Google Scholar 

  28. Xu G, Li X, Zhu Z, Wang H, Bai X (2021) Iron overload induces apoptosis and cytoprotective autophagy regulated by ROS generation in Mc3t3-E1 cells. Biol Trace Elem Res 199(10):3781–3792. https://doi.org/10.1007/s12011-020-02508-x

    Article  CAS  PubMed  Google Scholar 

  29. Weng Y, Wang H, Li L, Feng Y, Xu S, Wang Z (2021) Trem2 mediated Syk-dependent ROS amplification is essential for osteoclastogenesis in periodontitis microenvironment. Redox Biol 40:101849. https://doi.org/10.1016/j.redox.2020.101849

    Article  CAS  PubMed  Google Scholar 

  30. Peng P, Nie Z, Sun F, Peng H (2021) Glucocorticoids induce femoral head necrosis in rats through the ROS/JNK/c-Jun pathway. FEBS Open Bio 11(1):312–321. https://doi.org/10.1002/2211-5463.13037

    Article  CAS  PubMed  Google Scholar 

  31. Li M, Xing X, Huang H, Liang C, Gao X, Tang Q et al (2022) BMSC-derived ApoEVs promote craniofacial bone repair via ROS/JNK signaling. J Dent Res 101(6):714–723. https://doi.org/10.1177/00220345211068338

    Article  CAS  PubMed  Google Scholar 

  32. Cai FF, Bian YQ, Wu R, Sun Y, Chen XL, Yang MD et al (2019) Yinchenhao decoction suppresses rat liver fibrosis involved in an apoptosis regulation mechanism based on network pharmacology and transcriptomic analysis. Biomed Pharmacother 114:108863. https://doi.org/10.1016/j.biopha.2019.108863

    Article  CAS  PubMed  Google Scholar 

  33. Gao F, Niu Y, Sun L, Li W, Xia H, Zhang Y et al (2022) Integrating network pharmacology and transcriptomic validation to investigate the efficacy and mechanism of Mufangji decoction preventing lung cancer. J Ethnopharmacol 298:115573. https://doi.org/10.1016/j.jep.2022.115573

    Article  CAS  PubMed  Google Scholar 

  34. Cheng YZ, Yang SL, Wang JY, Ye M, Zhuo XY, Wang LT et al (2018) Irbesartan attenuates advanced glycation end products-mediated damage in diabetes-associated osteoporosis through the AGEs/RAGE pathway. Life Sci 205:184–192. https://doi.org/10.1016/j.lfs.2018.04.042

    Article  CAS  PubMed  Google Scholar 

  35. Cheng Y, Liu P, Xiang Q, Liang J, Chen H, Zhang H et al (2022) Glucagon-like peptide-1 attenuates diabetes-associated osteoporosis in ZDF rat, possibly through the RAGE pathway. BMC Musculoskelet Disord 23(1):465. https://doi.org/10.1186/s12891-022-05396-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Francisqueti-Ferron FV, Ferron AJT, Altomare A, Garcia JL, Moreto F, Ferreira ALA et al (2021) Gamma-oryzanol reduces renal inflammation and oxidative stress by modulating AGEs/RAGE axis in animals submitted to high sugar-fat diet. J Bras Nefrol 43(4):460–469. https://doi.org/10.1590/2175-8239-JBN-2021-0002

    Article  PubMed  PubMed Central  Google Scholar 

  37. Khalid M, Petroianu G, Adem A (2022) Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules 12(4):542. https://doi.org/10.3390/biom12040542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mao YX, Cai WJ, Sun XY, Dai PP, Li XM, Wang Q et al (2018) RAGE-dependent mitochondria pathway: a novel target of silibinin against apoptosis of osteoblastic cells induced by advanced glycation end products. Cell Death Dis 9(6):674. https://doi.org/10.1038/s41419-018-0718-3

    Article  CAS  PubMed  Google Scholar 

  39. Jia Q, Zhu R, Tian Y, Chen B, Li R, Li L et al (2019) Salvia miltiorrhiza in diabetes: a review of its pharmacology, phytochemistry, and safety. Phytomedicine 58:152871. https://doi.org/10.1016/j.phymed.2019.152871

    Article  CAS  PubMed  Google Scholar 

  40. Miricescu D, Totan A, Stanescu-Spinu II, Badoiu SC, Stefani C, Greabu M (2020) PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci 22(1):173. https://doi.org/10.3390/ijms22010173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns (2018) Biochem Biophys Res Commun 500(1): 26–34. https://doi.org/10.1016/j.bbrc.2017.06.190.

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (82004015, 82174079), the Project of Science and Technology Commission of Shanghai Municipality (21S21902600) and the Health Commission of Shanghai Municipality (ZY (2021–2023)-0203–04).

Author information

Authors and Affiliations

Authors

Contributions

WX: Performed experiments, analysis data and wrote the manuscript. TJ: Performed experiments, image editing and optimization. LD: Formulation analysis. YJ and LZ: Review and editing. TX and HX: Designed the research and revised the manuscript. LZ, TX and HX: funding acquisition.

Corresponding authors

Correspondence to Tianshuang Xia or Hailiang Xin.

Ethics declarations

Competing interests

The authors declared that there are no conflicts on interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 453 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Jiang, T., Ding, L. et al. Bajitianwan formula extract ameliorates bone loss induced by iron overload via activating RAGE/PI3K/AKT pathway based on network pharmacology and transcriptomic analysis. J Nat Med (2024). https://doi.org/10.1007/s11418-024-01779-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11418-024-01779-1

Keywords

Navigation