Skip to main content
Log in

Bioactivity-boosting strategy based on combination of anti-allergic O-methylated catechin with a Citrus flavanone, hesperetin

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Many patients with allergies have anxiety about taking anti-allergic medicines due to their side effects and increased medical expenses. Thus, developing functional foods/agricultural products for allergy prevention is strongly desired. In this study, we revealed that a Citrus flavanone, hesperetin, amplified IgE/antigen-mediated degranulation-inhibitory potency of anti-allergic catechin, (–)-epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3ʹʹMe), in the rat basophilic/mast cell line RBL-2H3. Hesperetin also significantly elevated the activation of acid sphingomyelinase (ASM), essential for eliciting anti-allergic effect of EGCG3ʹʹMe through the cell surficial protein, 67-kDa laminin receptor (67LR). Furthermore, oral administration of the highly absorbent hesperidin, α-glucosyl hesperidin, also enhanced the inhibitory potency of EGCG3ʹʹMe-rich ‘Benifuuki’ green tea (Camellia sinensis L.) on passive cutaneous anaphylaxis (PCA) reaction evoked by IgE/antigen in BALB/c mice. These observations indicate that hesperetin amplifies the ability of EGCG3ʹʹMe to inhibit the IgE/antigen-mediated degranulation through activating ASM signaling.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Hayat K, Iqbal H, Malik U et al (2015) Tea and its consumption: benefits and risks. Crit Rev Food Sci Nutr 55:939–954. https://doi.org/10.1080/10408398.2012.678949

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki T, Kumazoe M, Kim Y et al (2013) Green tea extract containing a highly absorbent catechin prevents diet-induced lipid metabolism disorder. Sci Rep. https://doi.org/10.1038/srep02749

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gilfillan AM, Tkaczyk C (2006) Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 6:218–230

    Article  CAS  PubMed  Google Scholar 

  4. Maeda-Yamamoto M, Inagaki N, Kitaura J et al (2004) O-methylated catechins from tea leaves inhibit multiple protein kinases in mast cells. J Immunol 172:4486–4492. https://doi.org/10.4049/jimmunol.172.7.4486

    Article  CAS  PubMed  Google Scholar 

  5. Maeda-Yamamoto M, Ema K, Monobe M et al (2009) The efficacy of early treatment of seasonal allergic rhinitis with benifuuki green tea containing O-methylated catechin before pollen exposure: An open randomized study. Allergol Int 58:437–444. https://doi.org/10.2332/allergolint.08-OA-0066

    Article  CAS  PubMed  Google Scholar 

  6. Masuda S, Maeda-Yamamoto M, Usui S, Fujisawa T (2014) “Benifuuki” green tea containing O-methylated catechin reduces symptoms of Japanese cedar pollinosis: a randomized, double- blind, placebo-controlled trial. Allergol Int 63:211–217. https://doi.org/10.2332/allergolint.13-OA-0620

    Article  CAS  PubMed  Google Scholar 

  7. Tachibana H, Koga K, Fujimura Y, Yamada K (2004) A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 11:380–381. https://doi.org/10.1038/nsmb743

    Article  CAS  PubMed  Google Scholar 

  8. Hong Byun E, Fujimura Y, Yamada K, Tachibana H (2010) TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor. J Immunol 185:33–45. https://doi.org/10.4049/jimmunol.0903742

    Article  CAS  PubMed  Google Scholar 

  9. Umeda D, Yano S, Yamada K, Tachibana H (2008) Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J Biol Chem 283:3050–3058. https://doi.org/10.1074/jbc.M707892200

    Article  CAS  PubMed  Google Scholar 

  10. Kumazoe M, Sugihara K, Tsukamoto S et al (2013) 67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis. J Clin Invest 123:787–799. https://doi.org/10.1172/JCI64768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsukamoto S, Hirotsu K, Kumazoe M et al (2012) Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochem J 443:525–534. https://doi.org/10.1042/BJ20111837

    Article  CAS  PubMed  Google Scholar 

  12. Fujimura Y, Umeda D, Yano S et al (2007) The 67 kDa laminin receptor as a primary determinant of anti-allergic effects of O-methylated EGCG. Biochem Biophys Res Commun 364:79–85. https://doi.org/10.1016/j.bbrc.2007.09.095

    Article  CAS  PubMed  Google Scholar 

  13. Fujimura Y, Fujino K, Yoshimoto T et al (2021) Eriodictyol-amplified 67-kDa laminin receptor signaling potentiates the antiallergic effect of O-methylated catechin. J Nat Prod 84:1823–1830. https://doi.org/10.1021/ACS.JNATPROD.1C00337

    Article  CAS  PubMed  Google Scholar 

  14. Barreca D, Gattuso G, Bellocco E et al (2017) Flavanones: citrus phytochemical with health-promoting properties. BioFactors 43:495–506. https://doi.org/10.1002/BIOF.1363

    Article  CAS  PubMed  Google Scholar 

  15. Kumazoe M, Fujimura Y, Hidaka S et al (2015) Metabolic profiling-based data-mining for an effective chemical combination to induce apoptosis of cancer cells. Sci Rep 5:9474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujimura Y, Kumazoe M, Tachibana H (2022) 67-kDa laminin receptor-mediated cellular sensing system of green tea polyphenol EGCG and functional food pairing. Molecules 27:5130. https://doi.org/10.3390/molecules27165130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang Y, Sumida M, Kumazoe M et al (2017) Oligomer formation of a tea polyphenol, EGCG, on its sensing molecule 67 kDa laminin receptor. Chem Commun 53:1941–1944. https://doi.org/10.1039/c6cc09504f

    Article  CAS  Google Scholar 

  18. Yamada M, Tanabe F, Arai N et al (2006) Bioavailability of glucosyl hesperidin in rats. Biosci Biotechnol Biochem 70:1386–1394. https://doi.org/10.1271/BBB.50657

    Article  CAS  PubMed  Google Scholar 

  19. Murata M, Shimizu Y, Marugame Y et al (2020) EGCG down-regulates MuRF1 expression through 67-kDa laminin receptor and the receptor signaling is amplified by eriodictyol. J Nat Med 74:673–679. https://doi.org/10.1007/s11418-020-01417-6

    Article  CAS  PubMed  Google Scholar 

  20. Bae J, Kumazoe M, Fujimura Y, Tachibana H (2019) Diallyl disulfide potentiates anti-obesity effect of green tea in high-fat/high-sucrose diet-induced obesity. J Nutr Biochem 64:152–161. https://doi.org/10.1016/j.jnutbio.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  21. Lee JH, Kishikawa M, Kumazoe M et al (2010) Vitamin A enhances antitumor effect of a green tea polyphenol on melanoma by upregulating the polyphenol sensing molecule 67-kDa laminin receptor. PLoS ONE. https://doi.org/10.1371/journal.pone.0011051

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yamashita M, Kumazoe M, Nakamura Y et al (2016) The Combination of Green Tea Extract and Eriodictyol Inhibited High-Fat/High-Sucrose Diet-Induced Cholesterol Upregulation Is Accompanied by Suppression of Cholesterol Synthesis Enzymes. J Nutr Sci Vitaminol 62:249–256

    Article  CAS  PubMed  Google Scholar 

  23. Yoshitomi R, Yamamoto M, Kumazoe M et al (2021) The combined effect of green tea and α-glucosyl hesperidin in preventing obesity: a randomized placebo-controlled clinical trial. Sci Rep. https://doi.org/10.1038/s41598-021-98612-6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kamohara T, Koshiguchi M, Maeda-Yamamoto M et al (2019) The combination of ‘Benifuuki’ with quercetin suppresses hepatic fat accumulation in high-fat high-cholesterol diet-fed rats. J Nutr Sci Vitaminol (Tokyo) 65:196–201. https://doi.org/10.3177/jnsv.65.196

    Article  CAS  PubMed  Google Scholar 

  25. Miyawaki M, Sano H, Imbe H et al (2018) “Benifuuki” extract reduces serum levels of lectin-like oxidized low-density lipoprotein receptor-1 ligands containing apolipoprotein B: a double-blind placebo-controlled randomized trial. Nutrients. https://doi.org/10.3390/nu10070924

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kurita I, Maeda-Yamamoto M, Tachibana H, Kamei M (2010) Antihypertensive effect of Benifuuki tea containing O-methylated EGCG. J Agric Food Chem. https://doi.org/10.1021/jf904335g

    Article  PubMed  Google Scholar 

  27. Kumazoe M, Tanaka Y, Yoshitomi R et al (2021) Glucosyl-hesperidin enhances the cyclic guanosine monophosphate-inducing effect of a green tea polyphenol EGCG. J Nat Med 75:1047–1042

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing. This work was financially supported by JSPS KAKENHI [grant Numbers JP20H05683 (to H.T.) and JP20H02935 (to Y.F.)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Tachibana.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimura, Y., Yoshimoto, T., Fujino, K. et al. Bioactivity-boosting strategy based on combination of anti-allergic O-methylated catechin with a Citrus flavanone, hesperetin. J Nat Med 77, 363–369 (2023). https://doi.org/10.1007/s11418-022-01668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01668-5

Keywords

Navigation