Skip to main content
Log in

Essential oil composition of Curcuma species and drugs from Asia analyzed by headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Essential oils (EOs) comprised of various bioactive compounds have been widely detected in the Curcuma species. Due to the widespread distribution and misidentification of Curcuma species and differences in processing methods, inconsistent reports on major compounds in rhizomes of the same species from different geographical regions are not uncommon. This inconsistency leads to confusion and inaccuracy in compound detection of each species and also hinders comparative study based on EO compositions. The present study aimed to characterize EO compositions of 12 Curcuma species, as well as to detect the compositional variation among different species, and between the plant specimens and their related genetically validated crude drug samples using headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry. The plant specimens of the same species showed similar EO patterns, regardless of introducing from different geographical sources. Based on the similarity of EO compositions, all the specimens and samples were separated into eight main groups: C. longa; C. phaeocaulis, C. aeruginosa and C. zedoaria; C. zanthorrhiza; C. aromatica and C. wenyujin; C. kwangsiensis; C. amada and C. mangga; C. petiolata; C. comosa. From EOs of all the specimens and samples, 54 major compounds were identified, and the eight groups were chemically characterized. Most of the major compounds detected in plant specimens were also observed in crude drug samples, although a few compounds converted or degraded due to processing procedures or over time. Orthogonal partial least squares-discriminant analysis allowed the marker compounds to discriminate each group or each species to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ravindran PN, Babu KN, Sivaraman K (2007) Turmeric: The genus Curcuma. CRC Press, pp 1–27, 409–436, 451–467

  2. Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB (2018) Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients 10:1553. https://doi.org/10.3390/nu10101553

    Article  CAS  Google Scholar 

  3. Dosoky NS, Setzer WN (2018) Chemical composition and biological activities of essential oils of Curcuma species. Nutrients 10:1196. https://doi.org/10.3390/nu10091196

    Article  CAS  Google Scholar 

  4. Lechtenberg M, Quandt B, Nahrstedt A (2004) Quantitative determination of curcuminoids in Curcuma rhizomes and rapid differentiation of Curcuma domestica Val. and Curcuma xanthorrhiza Roxb. by capillary electrophoresis. Phytochem Anal 15:152–158. https://doi.org/10.1002/pca.759

    Article  CAS  Google Scholar 

  5. Li R, Xiang C, Ye M, Li HF, Zhang X, Guo DA (2011) Qualitative and quantitative analysis of curcuminoids in herbal medicines derived from Curcuma species. Food Chem 126:1890–1895. https://doi.org/10.1016/j.foodchem.2010.12.014

    Article  CAS  Google Scholar 

  6. Dosoky NS, Satyal P, Setzer W (2019) Variations in the volatile compositions of Curcuma species. Foods 8:53. https://doi.org/10.3390/foods8020053

    Article  CAS  Google Scholar 

  7. Negi PS, Jayaprakasha GK, Jagan MRL, Sakariah KK (1999) Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem 47:4297–4300. https://doi.org/10.1021/jf990308d

    Article  CAS  Google Scholar 

  8. Behura C, Ray P, Rath CC, Mishra RK, Ramachandraiah OS, Charyulu JK (2000) Antifungal activity of essential oils of Curcuma longa against five rice pathogens in vitro. J Essent Oil-Bear Plants 3:79–84

    CAS  Google Scholar 

  9. Honda S, Aoki F, Tanaka H, Kishida H, Nishiyama T, Okada S, Matsumoto I, Abe K, Mae T (2006) Effects of ingested turmeric oleoresin on glucose and lipid metabolisms in obese diabetic mice: a DNA microarray study. J Agric Food Chem 54:9055–9062. https://doi.org/10.1021/jf061788t

    Article  CAS  Google Scholar 

  10. Tsai SY, Huang SJ, Chyau CC, Tsai CH, Weng CC, Mau JL (2011) Composition and antioxidant properties of essential oils from Curcuma rhizome. Asian J Arts Sci 2:57–66

    Google Scholar 

  11. Tohda C, Nakayama N, Hatanaka F, Komatsu K (2006) Comparison of anti-inflammatory activities of six Curcuma rhizomes: a possible curcuminoid-independent pathway mediated by Curcuma phaeocaulis extract. Evid Based Complement Alternat Med 3:255–260. https://doi.org/10.1093/ecam/nel008

    Article  Google Scholar 

  12. Tanaka K, Kuba Y, Ina A, Watanabe H, Komatsu K (2008) Prediction of cyclooxygenase inhibitory activity of Curcuma rhizome from chromatograms by multivariate analysis. Chem Pharm Bull 56:936–940. https://doi.org/10.1248/cpb.56.936

    Article  CAS  Google Scholar 

  13. Naveen Kumar K, Venkataramana M, Allen JA, Chandranayaka S, Murali HS, Batra HV (2016) Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium graminearum. LWT-Food Sci Technol 69:522–528. https://doi.org/10.1016/j.lwt.2016.02.005

    Article  CAS  Google Scholar 

  14. Jantan I, Saputri FC, Qaisar MN, Buang F (2012) Correlation between chemical composition of Curcuma domestica and Curcuma xanthorrhiza and their antioxidant effect on human low-density lipoprotein oxidation. Evid Based Complement Alternat Med 2012:e438356. https://doi.org/10.1155/2012/438356

    Article  Google Scholar 

  15. Theanphong O, Mingvanish W, Kirdmanee C (2015) Chemical constituents and biological activities of essential oil from Curcuma aeruginosa Roxb. rhizome. BHST 13:06–16

    Google Scholar 

  16. Braga MEM, Leal PF, Carvalho JE, Meireles MAA (2003) Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J Agric Food Chem 51:6604–6611. https://doi.org/10.1021/jf0345550

    Article  CAS  Google Scholar 

  17. Lai EYC, Chyau CC, Mau JL, Chen CC, Lai YJ, Shih CF, Lin LL (2004) Antimicrobial activity and cytotoxicity of the essential oil of Curcuma zedoaria. Am J Chin Med 32:281–290. https://doi.org/10.1142/S0192415X0400193X

    Article  CAS  Google Scholar 

  18. Angel GR, Menon N, Vimala B, Nambisan B (2014) Essential oil composition of eight starchy Curcuma species. Ind Crops Prod 60:233–238. https://doi.org/10.1016/j.indcrop.2014.06.028

    Article  CAS  Google Scholar 

  19. Liu Q, Zhu S, Hayashi S, Takano A, Miyake K, Sukrong S, Agil M, Balachandra I, Nakamura N, Kawahara N, Komatsu K (2021) Discrimination of Curcuma species from Asia using intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. J Nat Med 76:69–86. https://doi.org/10.1007/s11418-021-01558-2

    Article  CAS  Google Scholar 

  20. Wang C, Zhang W, Li H, Mao J, Guo C, Ding R, Wang Y, Fang L, Chen Z, Yang G (2019) Analysis of volatile compounds in pears by HS-SPME-GC×GC-TOFMS. Molecules 24:E1795. https://doi.org/10.3390/molecules24091795

    Article  CAS  Google Scholar 

  21. Wang X, Rogers KM, Li Y, Yang S, Chen L, Zhou J (2019) Untargeted and targeted discrimination of honey collected by Apis cerana and Apis mellifera based on volatiles using HS-GC-IMS and HS-SPME-GC-MS. J Agric Food Chem 67:12144–12152. https://doi.org/10.1021/acs.jafc.9b04438

    Article  CAS  Google Scholar 

  22. Zhang C, Qi M, Shao Q, Zhou S, Fu R (2007) Analysis of the volatile compounds in Ligusticum chuanxiong Hort. using HS-SPME-GC-MS. J Pharm Biomed Anal 44:464–470. https://doi.org/10.1016/j.jpba.2007.01.024

    Article  CAS  Google Scholar 

  23. Uehara S, Yasuda I, Takeya K, Itokawa H (1992) Terpenoids and curcuminoids of the rhizome of Curcuma xanthorrhiza Roxb. Yakugaku Zasshi 112:817–823

    Article  CAS  Google Scholar 

  24. Yang FQ, Li SP, Chen Y, Lao SC, Wang YT, Dong T, Tsim K (2005) Identification and quantitation of eleven sesquiterpenes in three species of Curcuma rhizomes by pressurized liquid extraction and gas chromatography-mass spectrometry. J Pharm Biomed Anal 39:552–558. https://doi.org/10.1016/j.jpba.2005.05.001

    Article  CAS  Google Scholar 

  25. Sun W, Wang S, Zhao W, Wu C, Guo S, Gao H, Tao H, Lu J, Wang Y, Chen X (2017) Chemical constituents and biological research on plants in the genus Curcuma. Crit Rev Food Sci Nutr 57:1451–1523. https://doi.org/10.1080/10408398.2016.1176554

    Article  CAS  Google Scholar 

  26. Komatsu K, Sasaki Y, Tanaka K, Kuba Y, Fushimi H, Cai S-Q (2008) Morphological, genetic, and chemical polymorphism of Curcuma kwangsiensis. J Nat Med 62:413–422. https://doi.org/10.1007/s11418-008-0272-x

    Article  CAS  Google Scholar 

  27. Pk A, Sc D (2009) Chemical composition of Curcuma longa leaves and rhizome oil from the plains of Northern India. J Young Pharm 1:312. https://doi.org/10.4103/0975-1483.59319

    Article  CAS  Google Scholar 

  28. Naz S, Ilyas S, Parveen Z, Javed S (2010) Chemical analysis of essential oils from turmeric (Curcuma longa) rhizome through GC-MS. Asian J Chem 22:3153–3158

    CAS  Google Scholar 

  29. Asghari G, Mostajeran A, Shebli M (2010) Curcuminoid and essential oil components of turmeric at different stages of growth cultivated in Iran. Res Pharma Sci 4:55–61

    Google Scholar 

  30. Oyemitan IA, Elusiyan CA, Onifade AO, Akanmu MA, Oyedeji AO, McDonald AG (2017) Neuropharmacological profile and chemical analysis of fresh rhizome essential oil of Curcuma longa (turmeric) cultivated in Southwest Nigeria. Toxicol Rep 4:391–398. https://doi.org/10.1016/j.toxrep.2017.07.001

    Article  CAS  Google Scholar 

  31. Gardini F, Belletti N, Ndagijimana M, Guerzoni ME, Tchoumbougnang F, Zollo PHA, Micci C, Lanciotti R, Kamdem SLS (2009) Composition of four essential oils obtained from plants from Cameroon, and their bactericidal and bacteriostatic activity against Listeria monocytogenes, Salmonella enteritidis and Staphylococcus aureus. AJMR 3:264–271. https://doi.org/10.5897/AJMR.9000198

    Article  CAS  Google Scholar 

  32. Ferreira FD, Kemmelmeier C, Arrotéia CC, da Costa CL, Mallmann CA, Janeiro V, Ferreira FMD, Mossini SAG, Silva EL, Machinski M (2013) Inhibitory effect of the essential oil of Curcuma longa L. and curcumin on aflatoxin production by Aspergillus flavus Link. Food Chem 136:789–793. https://doi.org/10.1016/j.foodchem.2012.08.003

    Article  CAS  Google Scholar 

  33. Sharma RK, Misra BP, Sarma TC, Bordoloi AK, Pathak MG, Leclercq PA (1997) Essential oils of Curcuma longa L. from Bhutan. J Essent Oil Res 9:589–592. https://doi.org/10.1080/10412905.1997.9700783

    Article  CAS  Google Scholar 

  34. Chane-Ming J, Vera R, Chalchat J-C, Cabassu P (2002) Chemical composition of essential oils from rhizomes, leaves and flowers of Curcuma longa L. from Reunion Island. J Essent Oil Res 14:249–251. https://doi.org/10.1080/10412905.2002.9699843

    Article  CAS  Google Scholar 

  35. Zhang L, Yang Z, Chen F, Su P, Chen D, Pan W, Fang Y, Dong C, Zheng X, Du Z (2017) Composition and bioactivity assessment of essential oils of Curcuma longa L. collected in China. Ind Crops Prod 109:60–73. https://doi.org/10.1016/j.indcrop.2017.08.009

    Article  CAS  Google Scholar 

  36. Singh P, Singh S, Kapoor IPS, Singh G, Isidorov V, Szczepaniak L (2013) Chemical composition and antioxidant activities of essential oil and oleoresins from Curcuma zedoaria rhizomes, part-74. Food Biosci 3:42–48. https://doi.org/10.1016/j.fbio.2013.06.002

    Article  CAS  Google Scholar 

  37. Kojima H, Yanai T, Toyota A (1998) Essential oil constituents from Japanese and Indian Curcuma aromatica rhizomes. Planta Med 64:380–381. https://doi.org/10.1055/s-2006-957458

    Article  CAS  Google Scholar 

  38. Singh G, Singh OP, Maurya S (2002) Chemical and biocidal investigations on essential oils of some Indian Curcuma species. Prog Cryst Growth Charact Mater 45:75–81. https://doi.org/10.1016/S0960-8974(02)00030-X

    Article  CAS  Google Scholar 

  39. Wahab IRA, Blagojević PD, Radulović NS, Boylan F (2011) Volatiles of Curcuma mangga Val. & Zijp (Zingiberaceae) from Malaysia. Chem Biodivers 8:2005–2014. https://doi.org/10.1002/cbdv.201100135

    Article  CAS  Google Scholar 

  40. Singh G, Kapoor IPS, Singh P, de Heluani CS, de Lampasona MP, Catalan CAN (2010) Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food Chem Toxicol 48:1026–1031. https://doi.org/10.1016/j.fct.2010.01.015

    Article  CAS  Google Scholar 

  41. Sakui N, Kuroyanagi M, Ishitobi Y, Sato Y, Ueno A (1992) Biotransformation of sesquiterpenes by cultures cells of Curcuma zedoaria. Phytochemistry 31:143–147

    Article  CAS  Google Scholar 

  42. Asakawa Y, Noma Y (2010) Biotransformation of sesquiterpenoids. In: Mander L, Liu HW (eds) Comprehensive natural products II: chemistry and biology. Elsevier Ltd., pp 824–825

    Google Scholar 

  43. Albino RC, Oliveira PC, Prosdocimi F, da Silva OF, Bizzo HR, Gama PE, Sakuragui CM, Furtado C, de Oliveira DR (2017) Oxidation of monoterpenes in Protium heptaphyllus oleoresins. Phytochemistry 136:141–146. https://doi.org/10.1016/j.phytochem.2017.01.013

    Article  CAS  Google Scholar 

  44. Yang FQ, Li SP, Zhao J, Lao SC, Wang YT (2007) Optimization of GC-MS conditions based on resolution and stability of analytes for simultaneous determination of nine sesquiterpenoids in three species of Curcuma rhizomes. J Pharm Biomed Anal 43:73–82. https://doi.org/10.1016/j.jpba.2006.06.014

    Article  CAS  Google Scholar 

  45. Padalia RC, Verma RS, Sundaresan V, Chauhan A, Chanotiya CS, Yadav A (2013) Volatile terpenoid compositions of leaf and rhizome of Curcuma amada Roxb. from Northern India. J Essent Oil Res 25:17–22. https://doi.org/10.1080/10412905.2012.747271

    Article  CAS  Google Scholar 

  46. Phaet-thanesuara P (ed) (1969) Pramuan Sapphakhun Ya Thai (Medicinal uses of Thai drugs), vol 3. Samakhon Rongrian Phaet Phaen Boran, Bangkok, pp 155–156

    Google Scholar 

  47. Qu Y, Xu F, Nakamura S, Matsuda H, Pongpiriiiyadacha Y, Wu L, Yoshikawa M (2009) Sesquiterpenes from Curcuma comosa. J Nat Med 63:102–104. https://doi.org/10.1007/s11418-008-0282-8

    Article  CAS  Google Scholar 

  48. Palanuvej C, Ruangrungsi N (2007) Chemical constituents and antimicrobial activity of volatile oil from Curcuma comosa Rhizome. J Health Res 21:35–42

    CAS  Google Scholar 

  49. Soontornchainaksaeng P, Jenjittikul T (2010) Chromosome number variation of phytoestrogen-producing Curcuma (Zingiberaceae) from Thailand. J Nat Med 64:370–377. https://doi.org/10.1007/s11418-010-0414-9

    Article  Google Scholar 

  50. Keeratinijakal V, Kongkiatpaiboon S (2017) Distribution of phytoestrogenic diarylheptanoids and sesquiterpenoids components in Curcuma comosa rhizomes and its related species. Rev Bras Farmacogn 27:290–296. https://doi.org/10.1016/j.bjp.2016.12.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate Assoc. Prof. Sitthithaworn Worapan at Srinakarinwirot University, Thailand, Prof. Emeritus Viswanathan M.V. at University of Madras, Dr. Unnikrishnan Payyappallimana at United Nations University, India, and Department of Traditional Medicine, Ministry of Health and Sports, Myanmar for kind help in collecting crude drug samples. This work was supported by JSPS KAKENHI Grant numbers JP14406030, JP21406004, JP15H05268 and JP18K06714.

Funding

This work is funded by Japan Society for the Promotion of Science (JP18K06714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuko Komatsu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Komatsu, K., Toume, K. et al. Essential oil composition of Curcuma species and drugs from Asia analyzed by headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry. J Nat Med 77, 152–172 (2023). https://doi.org/10.1007/s11418-022-01658-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01658-7

Keywords

Navigation